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CODING FOR FREQUENCY-~HOPPED SPREAD-SPECTRUM

CHANNELS WITH PARTIAL-BAND INTERFERENCE

Wayne Eric Stark, Ph.D.
. Department of Electrical Engineering
University of Illinois at Urbana-Champaign, 1982

ABSTRACT

The performance of codes on frequency-hopped spread-spectrum
channels with partial-band interference is investigated. The asymptotic
performance of codes is measured by the channel capacity and the random
coding exponent. The performance of specific codes is measured by the
bit error probability. The channel models we consider are quite general
and include channels with unknown parameters, channels which change with
time, and channels with memory. These models are applicable to
frequency-hopped spread-spectrum communication systems as well as to

several other communication systems.

We formulate the problem of communicating over channels with
unknown transition probabilities (i.e. communicating over channels with
Jamming) as a game theory problem with payoff function being the mutual
information between the channel input and the channel output. Under
certain restrictions it is shown that memoryless coding and jamming
strategies are simultaneously optimal strategies. Next we develop
simple, yet accurate, models for many channels with memory that arise in
practice. The channel statistics are constant for blccks of symbols of

fixed length. The receiver is said to have side information if it can
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determine the channel statistics for each block of symbols transmitted.

ril We determine the capacity, cutoff rate, and random coding exponent for
theii channels. The capacity without side information is an increasing

i function of the memory length while the cutoff rate is a decreasing

-I function of the memory length. We show that, for channels with memory

) and side information random-error correcting codes with interleaving and
burst-error correcting codes have comparable performance, while for

- channels without side information random-error correcting codes with
interleaving are inferior to burst-error correcting codes. As a

particular example, we examine the performance of several forms of

modulation and demodulation with partial-band jamming. Our conclusion
;< is that parti=nl-band jammers can be nuetralized provide we use codes
|
i with rate less than a constant that depends of the form of modulation
-
|

and demodulation.
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CHAPTER 1
‘ INTRODUCTION
’ In many communication systems the noise present is not entirely due to
thermal noise in the receiver. Many communication systems must operate in
! the presence of intérference or noise from other sources. For reliable

communication, these systems must be designed to perform acceptably even in -
the presence of interference. Often very little information is known about

the particular form of the interference. It could be that the power of the
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interfering signal is known or is known to be less than some number but

little other information is given on the structure of the interference. For

such situations the communication system must be robust to the particular form

r
B B 7N

of the interference.

In many applications there is the possibility that the communication

T e e

| e

system must operate when there is a hostile source of interference (called a
jammer) which tries to make the performance as unreliable as possible. One way
to combat this type of hostile interference is through the use of spread-~

spectrum modulation. If the power of the interference is concentrated in a

certain frequency band then if the transmitter uses more bgndwidth than 1is
necessary for reliable communication in the presence of thermal noise only,
g this interference will have less of an effect on the output of the receiver.
This 1is due to the fact that the interference now is occupving a smaller
fraction of the frequency band being used by the transmitter-receiver.

\ There are many forms of spread-spectrum (SS) modulation that can be

presently implemented. One form of SS is direct-sequence [1l1]. Direct-sequence

E spread-spectrum modulation uses signals with a particular structure in order

to minimize the effect of certain types of interference. Another form of
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spread-spectrum is frequency~hopped spread spectrum [11],[39]. This form of

SS changes its carrierkﬁ;equency according to a specified hopping pattern and
then reverses this operatihp at the receiver. Only interference at the same
frequency of the transmittedlsignal affects the performance of the system. All
other interference is rejected‘by filters in the frequency dehopper. A third
form of spread-spectrum modulationvis chirp S8S [11],{39]. The idea behind this
form of modulation is to contingousiy change the instantaneous frequency of the
signal so that interference at a parficulat frequency affects the output only a
fraction of the time. There are other forms of spread-spectrum modulation.
A combination of two or more of the above modulation forms is also possible and
should be considered as a possible SS modulation. The different forms of
spread-spectrum modulation have different characteristics. One type of SS
modulation might yield reliable communication for one type of interference
whereas another modulation performs poorly for the same interference.

In this thesis we will consider frequency-hopped (FH) spread-spectrum
communications subject to interference that is in only a fraction of the
total spread bandwidth the transmitter is using. There are many systems

that have this type of interference. The prime example of this is a

communication system with a partial-band jammer. This type of jammer con-

centrates all the available power in only a fraction of the spread bandwidth
of the transmitter. Interference in a fraction of the band arises also in
a spread-spectrum multiple-access communication system with different users
using different hopping patterns. Interference occurs when two users hop to
the same frequency at the same time. Yet another situation which gives rise
to partial-band interference is when there is some fading of the transmitted

signal in certain frequency bands. Then with FH SS modulation we have fading
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in certain frequency bands and no fading in other frequency bands. Although

we are considering frequency-hopped spread-spectrum modulation the models
developed are applicable to other forms of modulation with different inter-
ference. For example if we use direct-sequgnce modulation and the interference
is a partial-time jammer (pulsed-jammer) th;n the models for this tyv -~ of
modulation and interference are exactly the same as frequency-hoppe 'pread-
spectrum with partial-band jamming.

The effect of partial-band jamming on the average error probab. - ,
can be easily determined with frequency-hopped spread-spectrum communicatioms.
Consider a jammer that adds noise to the transmitted signal in only a fraction
of the frequency band being used. If the total power of the jammer is held
fixed, then in a fraction of the band,the noise power density is larger than
if the jammer was spreading his power over the entire frequency band. As a
result the signal-to~noise ratio in the fraction of the band jammed is
reduced by a factor corresponding to the fraction of the band jammed. Since
there is no jamming noise in the fraction of the band that is not jammed the
signal-to-noise ratio is very large. When the jammer chooses to corrupt the
entire frequency band the error probability is typically an exponentially
decreasing function of the signal-to-noise ratio. When the jammer chooses the
fraction of the band to jam in an optimal way then the probability is an inverse
linear function of the average signal-to-noise ratio. The degradation due to
intelligent jamming is a severe penalty to be paid in terms of performance
(as much as 30-40 dB increase in necessary power for the same error rate).

Methods that can reduce the loss due to intelligent jamming must be considered-

.
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For communication systems with intelligent jamming spread-spec:rum
alone is insuffiéient to provide adequate performance. In this thesis
we prove that indeed this loss can be entirely eliminated by suitable coding
techniques combined with spread-spectrum modulation.

There are several key issues that arise when considering coding with
r spread-spectrum communications in the presence of partial-band interference.
EI One key issue is whether or not the decoder knows if the received signal has
been jammed or not. Naturally knowing this side information and using this
in a clever way in the decoder can improve the performance compared to coding
without side information. Another issue which must be addressed is that of
interleaving. The interference in a spread-spectrum communication system may

have memory. 1In this case there are two options with coding: i~ter-

leave and use random error correcting codes or use burst correcting codes.
Previous work in coding has mostly been in evaluating the performance of
specific random error correcting codes on these channels [18], [21], [31],

{41], [44] or in computing the computational cutoff rate for these channels

i {21, (4], (8], [42], [43]). All of the papers on coding considered full
interleaving to eliminate the channel memory used random error correcting
& codes. In [7] the degradation due to partial interleaving with
random error correcting codes was considered. The papers on the channel cutoff
rate have also considered the degradation of partial interleaving when using
random error correcting codes.

In this thesis we consider the performance of channels with partial-band
interference from several viewpoints. In Chapter 2 we start by considering

a game theoretic approach to communication in the presence of interference

which henceforth we shall refer to as jamming. The payvoff function is taken
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to be the mutual information between the input of the channel and the output
of the channel. We show that, under certain restrictions on the allowable
strategies the jammer and coder may have, the optimal strategies are to

be memoryless; i.e. memoryless coding and jamming are the optimal strategies
for the coder and jammer. The payoff function is chosen to be the mutual
information for the following reason. It can be shown that codes and a
decoding rule exist such that reliable communication is possible for any
allpwable strategy of the jammer provided the code rate is less than the

value of the game with mutual information as the payoff function. Although
memoryless jamming is optimal, many situations arise in which the jamming
signal has memory. A model is presented in Chapter 2 which takes into account
the possibility of partial-band jamming and memory. This model is simple
enough to be mathematically tractable and yet gives an accurate description

of the channel behavior. This model highlights the combined effect of channel
memory and side information at the receiver concerning the presence of a
jammer. The basic feature of the model is the block nature of the memory.
This is perhaps the main feature of frequency-hopped spread-spectrum communica-
tion. With FH SS in many cases the interference at different frequencies are
statistically independent so that the channel is in fact a memoryless channel
from hop to hop. We conclude that when side information is available
interleaving does not degrade the performance,but without side information
available the channel capacity is decreased with interleaving. Also in Chapter
2 we take a particular example and evaluate the performance of random error
correcting codes and burst error correcting codes on channels with and without
side information (with full interleaving for the random error correcting cede)

to verify the conclusions obtained from capacity considerations.
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In Chapters 3 and 4 we consider channels with a particular form of
demodulation. Chapter 3 treats the case of coherent demodulation and in
Chapter 4 noncoherent demodulation is considered. In both chapters we
consider the channel capacity, cutoff rate and coded error probability of
frequency-hOpped.spread-spectrum communications in the presence of partial-band |
jamming. We consider channels with memory with and without side information
available. From capacity, cutoff rate and coded error probability we conclude
that provided codes with small enough rate are used,the optimal strategy of
the jammer is to jam the entire band so that the loss incurred from intelligent ;
jamming is in fact completely recovered by coding with small rates. This is
true with and without side information available. Also it is shown that in
many cases there exists an'optimal code rate that the coder wishes to use in
order to minimize the energy needed to transmit any symbol reliably. Various
coding schemes are calculated for cases of side information available and
interleaving also.

In Chapter 5 we make some comparisons between various coding strategies
and draw some conclusions concerning coding for channels with partial-band

interference.




CHAPTER 2
!! INFORMATION THEORETIC MODELS

2.1 Introduction

In this chapter we take an information theoretic viewpoint of

frequency-hopped spread-spectrum channels. The models we consider are

r‘.

general enough to include several forms of interference including partial-

band jamming, nonselective fading, and multiple access interference. The

basic feature of frequency-hopped spread-spectrum communication is the

~1

ability of the transmitter to change the frequency of the signal transmitted.
L; The assumption we make in describing the models is that when the frequency
changes the interférence at the new frequency is independent of the inter-
ference at all previous frequencies. The channel accepts symbols from an
input alphabet A and produces symbols in an output alphabet B. The input
symbols are partitioned into blocks of length n. Each block of n symbols

is transmitted at a particular frequency chosen according to a hopping

v - ri T — N
) "

pattern. Since the interference at a particular frequency is independent

of the interference at other frequencies two symbols in different blocks

t are affected by the interference independently. This is not necessarily

true for two symbols in thesame block of n symbols. Because of this the

s un bbb ot

{ channel is not memoryless. Consider now the new channel with input alphabet

P e

A" and output alphabet B". The new channel has as input symbols a single

d block of n symbols from the alphabet A. The output symbols are blocks of

Cu ol

X n symbols from the output alphabet B. Since two blocks of n symbols are

transmitted at different frequencies and are affected independently, the new

\
Ls channel is a memoryless channel. We make the following definition for any

channel. We say a channel is block n memorvless if the new channel which has

-
Ln‘g_¥ N ST W




as symbols plocks of n symbols from the original channel is a memoryless

channel. Block 1 memoryless is memoryless in the usual sense [27]. It is
important to point out that the transmitter knows which n symbols constitute
a block and are transmitted at a particular frequency since this will be
crucial in the analysis to follow. Thus frequency hopping with n bits per
hop and interference which is independent at different frequencies forms a
block n memoryless channel.

In this chapter we consider block n memoryless channels from an
information theoretic viewpoint. 1In Section 2.2 we consider a game theory
formulation for block n memoryless channels and determine the worst block
n memoryless channel and the optimal coding strategy. The game theory
approach uses the mutual information between the channel input and output
as the payoff function. This is justified in Section 2.3 where we state
coding theorems to show existence of codes with rates less than the value
of the game and with arbitrarily small error probability. 1In Section 2.4
we consider a particular type of block n memoryless channels. These channels
are block~l memoryless when conditioned on an external random variable that
typically describes the level of noise in a particular block. Capacity,
cutoff rate, and the reliability function are determined for these channels.
Channels with both memory and jamming are considered in Section 2.5. Finally,
in Section 2.6 we consider the performance of specific codes on channels

with memory. We consider Reed-Solomon codes which have code symbols as blocks

of n symbols. The performance of convolutional codes with interleaving is also

determined. We compute the performance of these codes on channel with and

without side information at the decoder and conclusions are drawn that

coincide with conclusions from capacity considerations.
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.’ 2.2 Game Theory Formulation

The communication channel we consider has input alphabet A and output

!J
I
B
-

alphabet B. Player I called the coder, wishes to communicate information
l | through the channel reliably with largest possible rate. Player II, called
the jammer,wants to minimize the rate at which information can be trans=
mitted through the channel. The channel is described by specifying two
random variables, X and Y. The random variable X is the input to the channel
from the coder and the random variable Y is the output of the channel. The
coder's strat'egies are distributions F_ on the random variable X while the

X
jammer's strategies are the distributions GY(yIa) on the output of the

channel when X = a is the input. The jammer thus chooses the conditional

probabilities of the output given the input while the coder chcoses the

e - aad

distribution of the input. We restrict the set of distributions the players

A &

can have as follows. The allowable distributions (strategies) for the coder

T

are given hy a set S. The collection {GY(y|a):a € A}, which we denote by
l .9Y, is required to be in a set T of allowable channels. The payoff function
Y63 ,JY) for this game is taken to be the mutual information I(X;Y) between

the input to the channel X and the output of the channel Y. The objective

M AT NN 4 ane . arh S o G rD A 4

of player I is to choose Fx € S to make ¢ (F ,.&Y) as large as possible.
s Player II chooses .&Y € T to minimize ¢ (F ,J'Y). Thus associated with the
E game are two programs:

Program I (Coder's Program)

C' = sup inf ¢(FX,JVY)
Fy €S J'Y €T
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Program I1 (Jammer's Program)

c" = 4inf sup @(F ,.8' ) .
.3 €T F €S

* %*
A strategy Fx € S such that inf{g (FX,J'Y) : "Y € T} = C' is called an

optimal strategy for the coder. Similarly if sup{p(F ,Jr;) : Fy € s} =¢c"
then .&; is called an optimal strategy for the jammer.

It is clear from the above programs that C' < C" and it is easy to give
examples where C' < C". However, since ¢ is concave in Fx and convex in .&Y

([27], Theorems 1.6 and 1.7) if S and T are compact convex sets then

C' = C" [38]. This equality is equivalent to the existence of a saddle point

i.e. a pair of strategies F; €s, .3; € T such that
8y < p(F,8) < p(Fend,) YF €S, 5 €T 2.1

If (2.1) holds then F; and J; are optimal strategies for the coder and
jammer respectively. This game theory formulation was considered by
Dobrushin {12] and Blachman [ 3].

We generalize this game theory formulation by allowing the players to
adopt n-dimensional strategies (i.e., non-memoryless strategies). We extend
the definition of admissible strategies to higher dimensions by using the
notion of the mixture of a set of distribution functions. Let the n
dimensional distribution F( )(x) X = (xl,...,x ), x = (xl,x eeesX ) have
marginal distribution FX (x) = F( )(ﬂ,ﬂ,..., © . X,®,...,®) with the i-th
component being x. We say F(n) € S(n) if the uniform mixture of the
marginals is in S:

n

F}E“) es(® ¢l ¢ Fe () €S . 2.2
2 R ia1 &4
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The admissible strategies for the jammer are defined similarly. We say
Jé“) 4 {Gé“) gla) : a€a™ e 1™ uhere cé") (z|2) is the n dimensional
conditional distribution of the output of the channel given the input

X = a, if the uniform mixture of the conditional marginals Gy (v|a) 1s in T:
i
# e 1™ 163 e (2.3)

n
where J_ = [G(n) @la) : Lre (yla,) € T, a € A"} is the collection of
O T T =
conditional distributions with uniform mixture of the marginals GY (yla) in T.
i

We note here that we have restricted the strategies to those with no
"intersymbol interference'; i.e. previous inputs are not allowed to affect
current outputs. For these generalized strategies we have the following
programs;

Program In:

Ve s (n) 4(n)
Ca 5@ ,én)i;‘f,r(n) A e B

Program 11 :
_—n

LU (n) (n)
G ® @it @ m *Fx Py D)
Y X

where the payoff function is now ¢(F§n),1én)) = % I(X;Y). We have the

following result concerning C; and C;.

Theorem 1: CA = C' and C; = C" for all n2 1.

Proof: First we prove Cé = C'., Let Fy be an admissible strategy i.e.

FX € S and let Jén) € T(n) be an admissible strategy for the

jammer. Then if X = (xl,xz,...,xn) is a random vector consisczing

of n independent identically distributed (i.i.d.) copies of X we have

4
]
1
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s 3™y 2L £ ge 5 ) ((27], Theorem 1.8)
. S ¢ Byl XYy '
2 ¢ (Fp.dy) ({27], Theorem 1.7)

where jY is the collection of uniform mixtures of the conditional distributions

G, - Since EY € T(n) we have

Y
(n) ;(n)
J(n)igfr (n)¢ (FE ’J_Y_ )= 3 :lleafT ¢(FX,JY)
Y Y
sup inf (n)¢ (F}-((n) ,Jx(n) )2 sup inf ¢(Fx,.3fY)

(n) (n) g(m)
FX €s .&X €T F €5 iYG'r

so that Cr'x 2 C'. Now let F}((n) € S(n) and GY(yla) be arbitrary. Then if

Gy(,n) is the n-dimensional distribution of Y = (Yl,...,Yn) given X = a

with Y, conditionally independent then

i

' (M) @), .1 ¢

¢(Fx ,JfY < - z (FX ,.&Y) ((27 1, Theorem 1.9)

& = i=1 i
b
; < ¢(Fx,$Y) ({271, Theorem 1.6)
r
n
. (n) 1
@ where F_ is the uniform mixture of Fi '3 i.e. F_(x) == I F_ (x).
t X X X mye %y
f Since F,{ € S we have
{ (n) (), o
L) J(n)ing(n)"’(Fg Y )“3 ing ¢(Fx"”¥)
2 Y Y
d
(n) ,(n) .

! sup inf p(F, ",&," ') £  sup inf 2(F,,&,)
s IO ONFIP IO M SIS ¢ F,€s », €1 <~ ¥
; X Y X Y
r‘ -
{ so that C_'IS C'. Thus Ct'1 = C' as asserted. Similarly C'r'1 = C".
b
!
!
o
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What w: have shown is that of all block n memoryless channels, the
channel with minimum mutual information is the block 1 memoryless channel.
The conclusions one can draw from this are that memofyle_ss jamming is

optimal (cén)*

R
@glx = ne (yilxi)) and memoryless coding is optimal
i=1 i

(Fén)*(g) - E (F; (xi)). Thus, of all types of interference, the one that
mi;imizes tht-:.mtu:l information is independent from symbol to symbol.

As an example let A =B = {0,1,...,M-1} and let T be the set of channels
with’ error probability per symbol less than €, 0 < ¢ < 1 and S be all

distributions on A. Then a result of Dobrushin [12] is that

log M + (L-¢)log(l-¢) +eloge ~elog(M-1), ¢<1 - %

cl.c" -1 (2.4)
0,

1
2]_...
€ ”.

Here C' and C" are measured in bits per channel use and all logarithms have
base 2. The optimal distribution F;(x) is the uniform distribution

*
on {0,1,...,M-1} and the optimal channel G (ylx) satisfies

(c/(M-l), y#x, €< 1-%

Folx)y = 1-¢ , y = x, ‘Sl'Flt @2.5)
1 1
.M ’ €21-4

Here we generalize this game to the n dimensional case and apply the theorem.
For the generalized strategies we use the chamnel n times to transmit n

symbols. Let Gi be the error probability of the i-th channel. Then T(n)
n

is the set of channels with i - ‘i < &. Also S(n) is the set of
i=1

[P D N
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distributions on A". - By the Theorem 1 Cr't = C' and C; = C' and is given in
(2.4). The optimal strategies are memoryless with marginals F;(x) and G,:(y|x)
given above. A conclusion one can draw is that if the average error
probability.is less than ¢ then with memoryless encoding I(X;Y) 2 C' = C"
with equality for the optimal strategy given above.

As a second example consider A = B = IR, the real line. Let

s = {F (0 j‘mxz dF, (x) < E} (2.6)
and
T = (G (v|x): [ (r-x)2dey(y|x) < N,x€al. 2.7)
yeR

The set of channels is restricted to channels whose added noise has mean
square less than or equal to N. For § and T given in (2.6) and (2.7) a

result of Dobrushin [12] and Blachman [ 3] shows that
% ”" E
C'=C"=3% log(1l + ﬁ) (2.8)

with F#(x) = 8(x/WE) and Gx(y|x) = & L=\ yhere §(v) is given by
16l (Jﬁ)

u 2
sy = L[ /% ax . (2.9)
2 -

Again we generalize this game to allow for n dimensional distributions.

The set S(n) and T<n) are given by

(@) _ (), . 1
S {F§ @®: =

i
“

R" x°x' dFén) (x) < E}

where ¢' denotes the transpose of the vector ¢. Similarly
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™™ = (o @lw: %y J ﬁ,&-z:.)(x-.&)'dcz(“)(z\z) < ¥, x €.

By Theorem 1 cl:l - cg = C' = C" and the optimal distributions are memoryless
with marginal distributions being Gaussian.

2.3 Information Theoretic Interpretation

In this section we give an information theoretic interpretation to the
results of the previous sections. We consider the existence of codes which
achieve reliable communication for all strategies the jammer or nature can
present to the coder. Here we state the results that apply from the
literature to our particular problem. First we clarify the model we are
considering. Then some definitions are necessary in order to state the
results. _

First we are going to consider only memoryless channels since block n
memoryless channels.are memoryless channels with larger alphabet sizes.
There are essentially two different methods a jammer might choose a channel
from the restricted set T in order to minimize the performance. One way,

which results in a channel called the compound channel [46], is for the

jammer to choose a channel from T and force the coder to use this
channel for every symbol transmitted in a codeword. The other way is for

the jammer to choose an element in T for each symbol transmitted. The

channel then might change from symbol to symbol of a codeword. This is

called an arbitrarily varying channel (AVC) [46]. Below we state some results

on the existence of codes for these channels. A code (n,M,A) is defined as

a set [(ul,Bl)Kuz,Bz),...,(uM,BM)} where uss i=1,2,...,M1s a length n
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sequence of symbols, with each symbol in A and Bi’ i=1,2,...,M are disjoint
sets of length n séquences with elements in B (Bi c Bn, i=1,2,...,M) such

that

Py@ilu,) <\ for i=1,2,...,Mand all S € T (2.10)

where u, = (uil’uiz""’uin) and .
c
P,(B,lu,) = = I G, (,lu,.). (2.11)
P Ang R 8 Y i
The rate R of an (n,M,\) code is R = log M/n. The coding theorem and its

converse for compound channels with A and B finite are as follows.

Theorem 2 (Wolfowitz [46]): Let 0 < A < 1 be arbitrary. Then there exists

a positive constant K° independent of & such that, for any n, there exists a

(n,M,2) code for T with rate R satisfying

R>c'-Ko/,/E .

Theorem 3 (Wolfowitz [46]): Let O < A < 1 be arbitrary. Then there exists a

positive constant Ké independent of & such that, for any n, there does not

exist a (n,M,\) code for T with rate R satisfying

R=C'+K/Va .

The above theorems do not assume the sender (transmitter) or receiver
know which channel the jammer has selected for the codeword. If the sender
knows which channel the jammer has selected then the above theorems are valid
with C' replaced by C". If the receiver knecws which channel the jammer has
selected then the theorems are valid as stated.

The above theorems are stated for the case of finite alphabe*s.

When just the output alphabet is infinite and the input alphabet is tinite
Theorems 2 and 3 are no longer valid (see [17]). For the case of infinite

output alphabet Theorem 2 is valid if we replace C' by C' where
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~

C'= sup sup inf I(x,[Y]p), (2.12)

Fx €S P J& €T

f is a partition of the output alphabet, and [Y]P is the quantization of Y
by P (see [27] p. 34). If however, the receiver knows which channel the
jammer selected then Theorems 2 and 3 are valid as stated. The above results
for the semicontinuous case were proved by Kesten [17]. Note that in the
semicontinuous case E"S C' so that C' is an upper bound on E'. In the
seqngl we will consider C' as the performance measure of the channel, since
it is easier to compute than 6'.

Consider now the second method the jammer might use to choose the
channel for use by the coder. I1f the jammer chooses an element of T for
each symbol of a codeword transmitted them we have an arbitrary varying
channel. The coding theorems for this case are far less complete than for
the compound channel. If the output alphabet B consists cf only two letters
then Theorems 2 and 3 are valid for the AVC ([46] Section 6.4). For larger

output alphabets,see [10] for related results.

2.4 Channels with Memorv

In this section we introduce a class of block m memoryless channels that
are not block 1 memoryless. These channels are of interest because they model
frequency-hopped spread-spectrum channels. After describing the charnel
models, we derive expressions for the capacity, cutoff rate, and reliability
function for these channels.

Let [As}, s £ (U denote a collection of memoryless channels, each with
input alphabet A and output alphabet B. The index parameter s lies in a
set I on which a probability distribution P is defined. Let Sl’SZ"" be a

sequence of independent identically distributed .. valued randcm variables,

P WY WA

s WPINSIRAIS TN Y
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the common distribution being P. For each integer m 2 1 we define the
channels A(m) and X(m) with input alphabet A as follows. When a sequence
of letters XgrXyseee from A is transmitted, the k-th block of m consecutive
letters, [x(k-l)m’x(k-l)m+1’"”ka-ll is in fact transmitted over one of
the component channels As; the random variable Sk determining which component
channel is used. If the receiver gets no direct information concerning which
channel was used for the transmission of the k-th block then we call this
the channel A(m) without side information. If with each noisy block of m
symbols the receiver knows the index s of the component channel being used
to transmit that block then we call this the channel Z(m) with side information.
We assume the transmitter can synchronize to the channel in the sense that the
transmitter knows which are the first and last letters in the k-th block of m
letters. One further assumption is that the receiver knows both the distribu-
tion P and the transition probabilities of the component channels. This last
assumption will be relaxed slightly in the next section.

Since the channel with (without) side information can be considered
as a memoryless channel with input alphabet A™ and output alphabet 3™ x Q (Bm),
the capacity is found by maximizing the mutual information of the memoryless
channel over all input distributions. For the channel without side informa-
tion we maximize the mutual information I(X;Y) between the vectors

X = (X,%5,...,X ) and ¥ = (¥;,Y

2,...,Ym) where
P(Y|X)
I(X;Y) = E <log, | v , (2.13)
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n
pl®) = E {pg(z|x)} = ziinl pg (74 1%)} (2.14)

and'ps(-‘°) is the transition probability for the component channel Aa' The

expectation in (2.13) is with respect to the random vectors X and Y and the

expectation in (2.14) is with respect to the random variable S with distribu-

tion P. Also in (2.13) p(y) is the unconditional distribution on the channel

output Y. For the channel with side information the output now consists of
Y and S. The mutual information (I(X;Y,S) is given by

pg XX
1@X;¥,s) = E( log, ENGE (2.15)
S —

where ps(y) is the distribution of the output conditioned only on the
random variable S.

The capacity C(m) for the channel without side information measured on
a per channel use basis is just

C(m) = max {2 10} - (2.16)
X

For the channel with side information the capacity E(m) is given by

T = max (= I(1,8)1 . (2.17)
X

In (2.16) and (2.17) the maximization is over all distributions on the
random vector X. If the input distribution that achieves capacity
(maximizes mutual information) for each component channel are identical,
then E(m) is in fact independent of m (E = E(m)) and is just the average

of the capacities of the component channels [29]:
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C= z{cs} (2.18)

where CS is the capacity of component channel As' Furthermore it can be

shown that [29]
Cm)<C , (2.19)
and if A and B are finite then

lim C(m) = C . (2.20)
m— e
As an example let Q = [0,1] and [As} be the set of binary syvmmetric
channels with crossover probability s. For this example A = B = {0,1].
Let d(x,y) denote the Hamming distance between the vectors x = (xl,xz,...,xm)
and y = (Yl’y2”"’ym)° The transition probabilities in (2.14) then are

easily shown to be

e B piln = Els*@-9""Y, d@y =k, k=1,2,...,m . (2.21)

The mutual information for the channel A(m) without side information,
is maximized by letting X have the uniform distribution
(i.e. P{x=0} = p{x=1} = %) with {Xi}?=1 independent and identically

distributed. The capacity C(m) is thus given by (see Appendix A)

. Ligyyl 14+l 2 (@
C(m) = mix 1ol =1+ o k:O (% i 1082 1 - (2.22)
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The factor of uf-1 in (2.17) is due to the fact that we are measuring
the capacity in bits per channel use. THhe mutual information for the channel
K(m) with side information is maximized by the same distribution and the

capacity E(m) is given by

Cm) = max {2 1(x:%,5)} = E{1 - Hy(5)] (2.23)
X
where
Hz(s) = -slogzs - (l-s)logz(los) . (2.24)

We now consider the random coding exponent Er(R) for these channels.
In order to be consistent with well established notations we change slightly
our notation. Let Q(x) be the distribution on the input X to the channel
and p(y|x) the distribution on the output vector Yy given the input vector x

as before. The random coding exponent Er(R) is defined as

E.(R) = max max[Eo(p,Q) -cR]} (2.25)
r 0<o <1 Qq
where
E(,Q) = -log, T [ I qeplyln M .2
y €B x€A

This function is of interest because of the following result of Gallager:

Theorem 4 (Gallager [13]): There exists on (n,M,\) code with error probability

A defined in (2.10) satisfying

-n Er(R)
NS b2 (2.27)

where R = logzm/n. Furthermore Er(R) is a convex, decreasing, positive

function of R for 0 £ R < C, where C is the capacity of the channel.

e
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For block m memoryless channels (2.25) and (2.26) are valid if x and y are
replaced by x and y,A and B by Am and Bm,and Eo(p,Q) is normalized by the
factor 1/m. Of special interest is the cutoff rate which is defined as
i! A
Ro = max E (1’Q)
Q o]

which many believe is the largest rate at which practical coding systems can

E‘I be implemented. The cutoff rate for the channels considered here can be computed
& as follows. Let RO,s denote the cutoff rate for componment channel AS; Ro(m)

E the cutoff rate for the channel A(m) and ib(m) the cutoff rate for the

%. channel A(m). We can express ib(m) in terms of RO,s as [ 29)

- 1 -m RO,
Ro(m) = - = log, E{2 S] < E{R (2.28)

O,S}

The cutoff rate without side information is, in general, less than the

cutoff rate with side information:

Ry(m) < §0 (m)

From (2.18) we see that the capacity with side information is independent of m.

However, the cutoff rate with side information depends on m and, in all
X | cases considered, decreases as m increases [29], [43], The cutoff rate with-
out side information is also a decreasing function of m for all cases

considered. This is contrary to the increase in capacity with increasing

e memory length. The limiting value of Eo(m) as m becomes large is given by [29]

lim Ro(m) = ess. inf{RO,s]

m-—

which for the case of finite number of channels with each having positive

probability is given by
lim Ro(m) = minF RO,s

!
i
|
]
f
i
m- e s €0
{.
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The function Eo(p,Q) for the channels of the previous example can be
calculated. We consider only those channels which are symmetric enough so
that the maximizing Q(x) in (2.25), denoted by Q*(x), is a constant
independent of x. Using Q*(x) = 2™™ and p(z]_:_:_) given in (2.21) we obtain

Eo(p,Q*) for the channel without side information as (see Appendix A)

1
m ———
an o ?l+p 1+p
E,(,Q*%) = p _\——Em /1032 kEO(:) o (2.29)
with K given in (2.21). For the channel with side information we obtain
- 1 r B F k1Y Q+p)\1+p
E,0.0%) = pg logy B T (@ 184" ] > (2.30)

where the expectation is with respect to the random variable S with
distribution P.

The cutoff rate RO for any discrete memoryless channel is found by
maximizing the function Eo(l,Q) over all input distributions Q. For the
channel without side information the cutoff rate Ro (assuming Q*(x) = Z-m)

is given by (see Appendix A)

2 o om % '

For the channel with side information the cutoff rate Eo is given by

- 1 o mmm
R=1-—log[2 Z () « (2.32)
0 m 2L1<=o 2=0 &4 m,“—*z'£ :

g T O W W, W WL W W, WL T e o T ® PP

.

RTINS




24

The cutoff rate is the intercept of the random coding exponent Er(R)
with the R = 0 axis and is the largest linear error exponent. Over a
range of rates Rcrzs R<C, with RCr a constant, the exponent in the bound

is the largest possible. Over this range of rates the random coding exponent

is equal to the reliability function defined in Gallager ([13], Eq. 5.8.8).
{ Let us now consider a specific example of these channels. Let
qQ={0,%], P{s =0} =1-¢, P{s = %} =¢ and A = B = {0,1]. Let Aj be

: a noiseless channel and A% be a useless channel (error probability %).

Then « for the channel without side information is given by

yk

™4+1-¢ , k=0

@ . = (2.33)

p e 2™ k=1,2,...,m .

Using (2.31) in (2.28) and then (2.28) in (2.25) yields the random coding

F exponent for this channel. This is plotted in Figure 2.1 for various values
! of m.

s The value of R in Figure 2.1 such that Er(R) = 0 is the capacity C of
:i the channel and the R = 0 axis intercept is the cutoff rate Ro.

i as m increases the capacity increases so that for rates sufficiently large ,

Note that

t channels with larger memory have larger random coding exponents. However,
ﬁ‘ for smaller rates this is no longer true and channels with smaller memory

may have larger coding exponents.

Consider now the channel with side information. The random coding
¥ exponent E;(p,Q*) may be calculated as
g
- 1 me ’
*) = - - - £ 4 2 . 2.3
| EO(O ,Q%) o m 1082[1 + € ] ( +)

!
S e e .
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This is used in (2.25) to determine the random coding exponent and is
plotted in Figure 2.2. Note that the horizontal intercept (the capacity)
is independent of m and that at all rates less than capacity, the random
coding exponent is larger for channels with smaller memory.

2.5 cChannels with Memory and Jamming

In this section we combine the models of channels with memory of the
previous section with the models of channels with jamming of Section 2.1
and 2.2 to model frequency hopped channels with non memoryless jamming.
The channels with memory of Section 2.3 implicitly assume the receiver knows
the distribution P on the component channels and the transition probabilities
of each component channel. In this section we consider the case of the
jammer choosing both the distribution P and the component channels for some

set of allowable distributions and allowable component channels.

Consider a class T of channels with memory. Each channel in the class
has the structure of the channels of the previous section being block m
!! memoryless but not block 1 memoryless. The jammer chooses from the set T
{ a channel for the encoder and decoder to communicate through. Assume that

the jammer chooses the channel for each codeword so that we are considering

b the compound channel model. Then, since we are assuming block memoryless
channels, the capacity C' is the same as given in Program I of Section 2.1

r with ¢(Fx’$§) given by % I1(X;Y) for the channel without side information

[. and % I(X;Y,S) for the channel with side information. The fact that C'

E is the capacity is justified by Theorems 2 and 3 for the case of A, B, D

|

;. finite., 1If B or {1 is infinite then C' is the capacity provided the

receiver knows which channel in T the jammer selected.
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As an example consider the case A = B = {0,1} and Q = {0,1}. Let

P{s = 1} =¢, P{S =0} = 1-¢, 8, be a noiseless binary channel and &,
a binary symetric channel with crossover probability of f(¢) for some

decreasing function £. Then for each ¢ € [0,1] we have a different channel.

The jammer chooses ¢ and thus the channel for communication.

The capacity C' of this channel when no side information is available

is given by
{ |
C' = min {%‘ I(X;0)} = min {1 +7i ; (:)am K18 k} (2.35)
L 0<e<1 0<e<1 k=0 ’ ’
T" where
1-¢+e(l-£(e))™ k=0
X -
- ok (2.36)
tﬂ e ) A-£eN™* k=1,2,....m .

When side information is available then the~capacity C' is given by

f c' = min {(L-¢) + ¢ -(l-Hz(f(e)))] . (2.37)
0<e=<1

We will see in Chapters 3 and 4 that this example is directly applicable

1 to frequency-hopped channels with partial band jamming.
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2.6 Performance of Codes on Channels with Memory

Up till now we have only considered asymptotic measures of the channel's
ability to convey information. Here we compute the performance of specific
codes on a particular channel with memory. We defer the performance of
codes on channels with jamming and memory until later. The channel model
we consider is that of Section 2.3 withQ = {0,%}, P{s=0} =1 - ¢,

P{S=%} =¢, A =B = {0,1}. Let 8, be a noiseless binary channel and A% a
binary symmetric channel (BSC) with error probability %. For this channel

we consider Reed-Solomon (RS) codes and convolutional codes with interleaving.
We also consider the cases of side information available and not available.

First consider the case of side information available so that the
decoder knows which channel each block of m bits was transmitted over. Since
the error probability is % on channel A% the decoder can erase all bits in
every block of m bits transmitted over A%. For R-S codes we treat a block of
m bits as one symbol (in GF(Zm)) of the code. The probability of a received
symbol being erased is just e. For R-S codes the probability of a decoded
symbol being in error Pe s for a bounded distance decoder can be computed

’

as [1]

P o= oz 4 Meda-eyni (2.38
e,s j=n-k+]_ n j € . . )

If there are more than n-k erasures the R-S code is unable to recover the
erased symbols. If the decoder is unable to recover the erased positions the
decoder zueses the erased symbols., The bit error probability Pe,b is

given by

P = %P . (2.39)
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We have plotted in Figure 2.3 the bit error probability for two different

R-S codes of rate approximately %. The first is the (255,127) R-S code with
symbols in GF(28). We consider using this code on K(S) (i.e. m = 8). The
other R-S code is the (31,15) code with rate approximately %. This code

is used on the channel A(5) and has symbols in GF(25). (We have plotted

these versus 10 loglo(llc) since for partial-band or pulsed jamming the
fraction of the band jammed or duty factor is typically inversely proportional

to the signal-to-jamming noise ratio.)

The performance of convolutional codes on channel Z(m) is considered next.

Here we consider only binary convolutional codes with interleaving. The view-
point we take is that interleaving changes channel K(m) into channel K(l).
This can be done by having m convolutional encoders and decoders. Each bit
in a block of m bits that is transmitted comes from a different encoder and

is decoded by a separate decoder. With this interleaving we have the

channel 4(1) which is just a binary erasure channel with erasure probability .

The bit error probability Pe b for rate k/n convolutional codes with

Viterbi decoding is bounded by ({9 ] Eq. (6-11))

[--]

z .P, 2.4
S (2-40)
7

<
Pe,b

==

where df is the free distance of the code, wj is the total information weight
of all paths of weight j,and Pj is the error probability between two words
differing in j symbols. For the binary erasure channel Pj is just % e

since for an error to occur all j symbols must be erased and given that all

—bd
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Figure 2.3. Error probability of Reed-Solomon codes (solid lines) and
convolutional codes (dashed lines) on the interference
channel of example la (side information available).
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symbols are erased the error probability is %. In Figure 2.3 we plot the
bit error probability given in (2.39) for two convolutional codes of rate %.
These codes are the constraint length 7 (v =6) and constraint length 9 (v =8)
codes as given in Table B-2 of [ 9].

Consider now the case of no side information available. For R-S code

the probability of a received symbol being in error P, is
p, = e(l- 27 My =e2®-1)/2" . (2.61)

The error probability Pe s of a decoded symbol with bounded distance

H

decoding is

n
- 3 . j n-j
Pe,s = nEk o (j)ps (1'-95) . (2.42)
j=—2-‘+1

I1f there are more than (n-k)/2 errors the bounded distance decoder detects

with high probability that too many errors have occurred. In this case the
decoder sets the decoded symbol equal to the received symbols. The decoded

bit error probability Pe is then given by

,D
m-1
Pe b = ———ﬁ——a Pe s = 2m Pe s (2.43)
Po-@t ¢t 2 ’

We have plotted in Figure 2.4 Pe,b for the (31,15) and the (255,127) R-S
codes vs 10 loglo(l/e) on channel A(5) and A(8) respectively.

The performance of the convolutional codes with interleaving on
channel A(m) is the same as the performance of a convolutional code on

A(l), a BSC with crossover probability /2. For this we use thue bound in

(2.39) with Pj given by
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and coavolutional codes (dashed lines) on the intarference

channel of example la (side information not available).
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3

I emta-enit , j odd
i=(j+1)/2
P, = (2.44)
] -
L dMemta-enyttt | 5 even
i=3/2

This bound is plotted in Figure 2.4 versus 10 loglo(llc).

In comparing Figure 2.3 ;nd Figure 2.4 we observe that the degradation
forconvolutional codes (used in conjunction with interleaving) between
channels Z(m) and A(m) is much more than the degradation for R-S codes.
Furthermore when side information is available the convolutional codes
performance is comparable to the (31,15) R-S code. The (255,127) code is more

complex and has better performance than the other codes. These results are

not surprising since with side information available the channel capacity
does not depend on the memory length so that interleaving should not cause a
degredation in performance.’ However without side information available the
F! capacity is an increasing function of the memory which implies that inter-
leaving without side information should degrade the performance. The R-§

codes which do not use interleaving perform better than the convolutional

'
r. codes with interleaving when no side information is available as expected.
f Other codes will be studied in the next two chapters.
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CHAPTER 3
CODING FOR CHANNELS WITH PARTIAL~-BAND

JAMMING AND COHERENT DEMODULATION

3.1 Introduction

In this chapter we consider a frequency-hopped spread-spectrum
communication system subject to partial band-jamming. We consider both binary
phase shift keying (BPSK) and M-ary orthogonal signaling forms of modula-
tion. The modulated signal is frequency-hopped to produce the trans-
mitted signal. The received signal is first frequency-dehopped and then
coherently demodulated. The jammer adds noise to the signal over only a
fraction of the frequency band the transmitter is using.

In Section 3.2 we describe the channel models we will use. 1In Section 3.3
we calculate the capacity of BPSK and M-ary orthogonal signaling in the
presence of partial-band jamming. We consider channels with and Qithout
side information concerning the presence of the jammer and also channels
with memory. In Section 3.4 we repeat these calculations for the cutoff
rate. Finally in Section 3.5 we evaluate the performance of specific codes
when side information is and is not available. This is then compared to the
cutoff rate and the channel capacity.

3.2 Channel Models

In this section the channel models for frequency-hopped spread-spectrum
conmunication using BPSK and M-ary orthogonal signals are given when there
is partial-band jamming. As mentioned in Chapter 1 we treat the frequency

hopper and dehopper as performing inverse operations on the modulated
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signal. The output of the frequency dehopper consists of two additive
terms. The first term corresponds to the received signal in the absence
of noise, while the second term is due to the jamming noise and is nonzero
only if there was jamming noise at the same frequency as the transmitted
signal.

Consider frequency hopping with m symbols per hop. First we describe

the channel for a particular hop for both BPSK and M-ary orthogonal signaling.

For BPSK the channel input alphabet is A = {0,1} while for M-ary orthogonal

signaling A = {0,1,...,M-1}. Assume that the particular hop begins at time

t = 0 and is of duration mT where T is the duration of a single symbol. Denote

by X,, 0< j < m, the random variable which takes values in A. When the input

J

Xj, 0< j <m, takes the value i € A, the data modulated signal §i(t - jT) is
the input to the frequency hopper during jT < t < (j+1)T. The signal §i(t)

is given by
§,(t) = 2P p (t) sin(u t + -1 r/2) (3.1)

for BPSK while for M-ary orthogonal signaling [§i(t)} is any orthogonal

i€A
signal set with each signal having power P, duration T and center frequency
@, (see for example [20],Sec. 5-3). 1In (3.1) pT(c) =1 for 0< t < T and
pT(t) = 0 otherwise, P is the signal power and W, is che center frequency
of the modulated signal. The frequency hopper changes the frequency of the
modulated signal in different hops to one of q frequencies according to a

specified hopping pattern to produce the transmitted signal si(t-jT)

during the interval jT < t < (j+1)T, 0 < j < m. For BPSK

s;(8) = /2P p(€) sin(y,t + -1t r/2y (3.2)
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and w,, 1 S 4 < q is one of the q possible frequencies of the hopping

z’
pattern. For M-ary orthogonal signaling (si(t)}i €A is the same
orthogonal signal set with center frequency w, instead of w..

The jamming j(t) consists of a sum of bandpass Gaussian processes:

q
i) = £ 3,0 3.3)
i=1

where the process [ji(t); 0< t < =} is a bandpass Gaussian process with
center frequency @, , 1< i= q, the q distinct frequencies of the hopping
pattern. Let S(w) be a low pass spectral density, i.e. S(w) = 0 for lw| > @
for some w . We make the simplifying assumption that if ji(t) has nonzero
power then S(w - wi), is the shape of 1its spectral density. Each process
which has nonzero power has jidentical statistics and thus the power in each
process is the same. 1In Appendix B we show that if the receiver has side
information concerning which frequencies are jammed and at what power levels
then in fact the worst case jamming stratégy is for the jammer to place equal
amounts of power in a fraction of the possible transmitted frequencies bands

and no power in the remaining fraction.

When s, (t - jT) is transmitted,0 = j < m,the received signal r(t) consists

of the sum of the transmitted signal and the jamming signal:
r(t) = s;(c-3T) + j(t), T=se= (G+LHT . (3.4)

(Here we assume, without loss of generality that all time delays are zero.)

The signal 7(t) at the output of the frequency dehopper is then given by

B(e) = 8, (c-jT) + ﬁz(c) IT< < (LT (3.5)

e A A s e A m o a_w = A
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where §i(t<-jT) is the modulated signal and 3L(t) is the bandpass process
with spectral density s(w-wz) obtained from j(t) when j(t) is f:equency
translated by w, - w and then filtered by an ideal bandpass filter with
center frequency w, and bandwidth ZwL. Here W is chosen so that §i(t) is
essentially unaltered when passed through an ideal lowpass filter with
cutoff frequency W . With probability p,jz(t) has nonzero power. A
detailed model for the frequency hopper and dehopper is given in [13].

The models for the jamming signal and transmitted signal have several
implicit assumptions that should be clarified. First, it is assumed that
the jamming signal is a stationary random process. Second, it is assumed
tnat the transmitter does not know which frequencies are being jammed with
nonzero power. ILf the transmitter knows which frequencies are being jammed,
the transmitter could put more power in those frequencies jammed and less in
the frequencies unjammed. However, if the jammer knows the transmitter is
putting more power in a particular set of frequencies, the jammer might
wish to change the frequencies being jammed periodically in which case the
transmitter might not be able to determine which frequencies are jammed at
a particular time. Assuming that j(t) is a stationary random process and
that the transmitter does not know the frequencies being jammed is equivalent
to allowing the jammer to change the frequencies being jammed often enough so
that the transmitter cannot determine the jammed frequencies. A further
assumption made is that during each hop either all the symbols are jammed
with equal power or there is no jamming signai (with nonzero power) for
all m symbols. This is perhaps the most restrictive assumption. If, however,
the jamming signal changes much more slowly than the hopping rate then this

is a reasonabls assumption.
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The demodulator has as input r(t) given in (3.5). For BPSK the demodulator

computes the correlation Y between r(t) and si(t)
GH+LT |
Y. =v [ £(t) cos w_t dt, 0<j<m |, (3.6)
3 T c

where ¥ is a normalization constant to be defined later. For M-ary

orthogonal signaling the demodulator computes

g+vT |
Y, .=y [ T(t)s, (t-jT)de  0< j<m, L1i€A . (3.7)
i,] §T i :
Thus for BPSK the channel is described by the input Xj and Yj’ 0< j <m.
For M-ary orthogonal signaling the channel is described by X, and

3

Yi j° i €A, 0< j<m. Since we assume that the jammer's signal is stationary
3
and that the transmitter does not know which frequencies are being jammed the

channel is memoryless from hop to hop so that the channel is completely

described above.

To compute lhe distribution of the demodulator output we introduce a
random variable Z which is nonzero if the jamming signal at the output of
the frequency dehopper has nonzero power and is zero otherwise. Let

P{z =170 } =0 and P{Z = 0} = 1-p. Then we can describe the signal T(t)

at the output of the frequency dehopper by
£(t) = 8, (£ -37) + z:3(t) (3.8)

where 3(t) is a bandpass Gaussian process with spectral density S(w'-wc).
Sl e Y i . . - . . ,
We now assume that S (w mc) is flat in the interval [wc wL,uc-+nL] with

two sided density % g}
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For BPSK Yj in (3.6) with y = (Q/NJT)% is a random variable given by

Y a'\/ 2E (-1)1 + 2.7 3.9
] Ny

where E = PT is the energy per symbol and T is a zero mean Gaussian random
variable independent of Z with variance 1. Thus Zn also has mean square 1.

The density of Yj given Xj =1 and Z = 4/1/p (jammer on) is given by

2
pi;lx =1, 2=J1/p ) = emE . exp(-%/yi-u\/ %—"—)1 . (3.10)
J
with ¢ = (-l)i. When Z = 0 (jammer off) we have

rYYj =~/2E/NJ (-1)i|xj =i,2=0}=1 . (3.11)

Note that if Yj #«/§E7§; (-1)i then with probability 1 the jammer was on
(z =‘JT7E ). Using this test the receiver can tell whether or not the
jammer was on during a particular hop. In this case we say the receiver has
side information available. However, the receiver may just decide Xj =1
if Yj < 0 and Xj = 0 otherwise. In this case we say the receiver makes hard
decisions and disregards the side information. Alternatively the receiver
may make hard decisions and retain the side information.

For M-ary orthogonal signaling Yi,j in (3.7) with y = (Z/NJ,T)% and

Xj =i is given by

=2 -
Y g = Vi S +20 k=011 (3.12)

where E is the energy of each signal iu the set, Z and T are the same as

R = 1 £ { = = =1 1
before and ko1 1if i k and 5k,i 0 otherwise. The density of Yk,'

given Xj =1 and Z =41/c is given by (3.10) with » = 3, ,. I

-~ -1

Kyl

2=0

rn
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V2
P{y, - -ﬁfak’dxj =1,z=0} =1 . (3.13)

Thus side information is available by checking if Y =Y 2E § for
k,j NJ k,1i
some 1 € A. Hard decisions correspond to deciding xj =1 if Y1 j > Yk j
3 ?
for all k # i. We consider hard decisions both with and without side

information available.

3.3 Channel Capacity

In this section we derive expressions for the capacity of the channels
described in the previous section. The capacity is found from the game
theoretic formulation of Chapter 2 with the jammer choosing the duty factor p.
We compare this to the case of uniform jamming (p =1). We conclude that
provided codes with rate less than some critical rate are used uniform
jamming is the worst case jamming strategy.

First consider BPSK and side information available to the receiver.
There are two binary input channels involved here. When the jammer is on,
the channel is just an additive Gaussian noise channel with signal
energy-to-noise variance ratio ZEO/NJ. The capacity C(ED/NJ) of this
component channel is achieved with a uniform distribution on A and is given

by ([ 6] [ 27, Problem 4.14])

C(x) = {xz - I g(t)in cosh(x2-+tx)dt}/2n2 (3.14)

where g(t) is the density of a zero-mean, unit variance Gaussian random

variable given by

2
g(t) = (2n)"F ot . (3.15)
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When the jammer is off the component channel is a binary noiseless
channel with capacity 1 achieved by a uniform distribution on A. Thus both
component channels have the same input distribution achieving the component
capacity. In this case from (2.18) the capacity of the composite channel is
independent of the memory length m of the chanmel. Thus the capacity
E(E/NJ) for BPSK with worst case partial-band jamming is given by

E(E/NJ) = min {p C(Ep/N;) + (1-90)} . : (3.16)
0<p<1

The minimum in (3.16) can be found numerically or by setting the first

derivative equal to zero:

=2 e@ /N + (L-p)} = 0

or

C(Ep/NJ) + 'r:p/NJ C'(Ep/NJ) =1 (3.17)

where C'(x) = 3C(x)/3x . From (3.17) we can determine the dependence of the

worst case ¢ = p* on the signal-to-noise ratio E/NJ as

1 E/NJ <«
p* = (3.18)
o
/N E/NJ z o
J
where & is the solution of
Cla) +aC'(@) =1 . (3.19)

Using (3.18) in (3.16) we obtain

Bcched . *

FEBY SV SV LR
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C(E/NJ) E/NJ <a
E(E/NJ) = (3.20)
_a -acgaz
1 E/NJ E/NJ 2 ¢

Solving (3.19) we find that o = 1.649 and C(w) = 0.655. If we now have a
different type of receiver capacity C®) in the presence of additive
Gaussian noise with signal-to-noise ratio B then with partial-band jamming
(3.16)-(3.20) are valid with C replaced by E. For BPSK with hard decision
receiver and additive Gaussian noise the error probability is given by

QQJZE/NJ) where Q(x) = f g(t)dt. The capacity is then given by [27]
x
c,6) = 1-1,QW/2)) (3.21)

where 8 = E/NJ. Using (3.21) in (3.19) and solving for « we find o, = 2.156
and Czomz) = 0.630., Thus for BPSK with hard decisions and side information

the capacity Eé(E/NJ) is given by

CZ(E/NJ) E/NJ <a,
EZ(E/NJ) = (3.22)
t, = a,C, (@,)
2 "%2~2 V2
1 - E/N] E/N; 2,

Now consider the case of no side information available and hard
decisions. Since side information is no longer available the capacity is no
longer independent of the memory. However tihis channel fits exactly the
channel model in the example of Section 2.5 with € = ¢ and £() =Q(V6E?7§;)

so that the capacity is given by (2.33) and (2.36). The minimization in




4y

(2.34) must in general be done numerically. However for the case of no
memory (m = 1) the channel becomes a BSC with crossover probability ; given

by the average of the crossover probabilities of the two component channels:

P =0 QQ/ZEQ/NJ) + (L-p)s0 =p QQJZEp/NJ) (3.23)
so that the capacity is the minimum of 1<-H2(E) over p € [0,1]. Since
a 1-H2(x) is decreasing function of x we can equivalently maximize E over p
},
QGJZEp/NJ) E/N < ay
max ; = (3.24)
4 0<p<1 R4
4 E/N, BNy 2 ey
_ J
in which case
1~ HZ(QQ/ZE/NJ) E/NJ < <y

CEMp = min . 1-H,() = (3.25)

S3
] Lok, (m;) BNy 2 oy

where @y = 0.709, E3 = 0.08285, and C(«

3) = 0.480.

For M-ary orthogonal signaling we consider only the case of hard

decisions. The probability P of an error (Y, . > Y, for some k # i
e,s k,j i,

when Xj = i) for uniform jamming can be calculated to be [1]
=

f P, JE/N) = (4-1) ] é(t«-JZE/NJ)GM-Z(t)g(t)dt (3.26)

=

where g(t) is given in (3.15) and 3(x) = 1-Q(x). For the case of side

-y ¥

information available and partial-band jamming the capacity can be calculated

T

using (3.16)-(3.20) with C(x) replaced by éw(Pe o (@) where

PR
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&y (®) = TEézﬁ {log,M + (1-P)log,(1-P) +P log,(p/Q-1)} . (3.27)

The capacity (in M-ary units) is then given by

Gy (B E/N ) E/N, < ¥y
Sy - C, (B, (¥y)) O
Yy = Y, )
M 'MM“'s M
L TR, E/Ny = vy

When side information is not available the capacity depends on the memory
length. For m = 1 the channel is a memoryless M-ary symmetric channel

(MSC) with symbol error probability given by the average error probabilities
of the two component channels. As before the capacity is a decreasing
function of the symbol error probability so that maximizing symbol error
probability is equivalent to minimizing capacity. The maximum of the

average error probability 5; s(E/NJ) is given by
>

P (E/N.) = ma P (Ec/N
s E/ND o< pfs lfp o (Ee/ J)}
PS(E/NJ) E/NJ < AM
= (3.29)
P ()
Ms''™
—-——-E/NJ E/NJ > )N .

The capacity C,(E/N;) is found by using (3.27) with P = FS(E/NJ) given in

(3.29). Thus

Y w——e
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o N
-
- Cy (P (E/N D)) E/NJ < Ay
b C E/N ) = (3.30)
NEs ()
9 ~ s
— 2
Cu( E/N, > BNy 2 hy
E‘ The values of Yy CM(YM)’ )‘M and Ps()\M) are given in Table 3.1 for
- M=2k, k =1,2,...,8.
] Table 3.1. Values of constants used to determine capacities for M-ary
e orthogonal signaling.
- Moo S ) M P Uy S )
m 2  2.156 0.630 1.418 0.117 0.480
3
: 4 2.402 0.596 1.701 0.211 0.461
8 2.631 0.563 2,012 0.287 0.443
fp 16 2.987 0.532 2.345 0.350 0.424
32 3.315 0.504 2,699 0.402 0.407
64  3.664 0.478 3.069 0.446 0.390
' e 128 4.030 0.454 3.455 0.484 0.374
b
{ 256  4.410 0.432 3.853 0.516 0.359
}. To interpret these results concerning the channel capacity we consider
!
Theorem 2 of Chapter 2 which says that there exists codes with rate r < C,
such that reliable communication (error probability less than %) is possible.
f. In all cases considered here the capacity is a function of E/NJ the symbol
¢
A .
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signal-to-noise ratio (SNR). If we use codes of rate r then the bit
signal-to-noise ratio li:b/NJ is given by

Eb/NJ = (E/NJ)-(I/r logzM)
where M = 2 for BPSK. Thus for reliable communication we must have
r < C(Eb/NJ- r log,M)
or
-1
Eb/NJ >C ()/r log2M (3.31)

where C-l(r) is the inverse function of the capacity. The performance of

a particular modulation-demodulation scheme can be measured by the right
hand side (RHS) of (3.31) and determines the bit signal-to-noise ratio needed
for reliable communication. “,//’

For soft decision BPSK the capacity with side information is given by
(3.20). 1In Figure 3.1 we plot RHS of (3.31) with C given in (3.20). This
is compared to the bit SNR needed to achieve capacity for uniform jamming.
Note that for small enough code rate (r < 0.655) uniform jamming is the
optimal strategy for the jammer.

For hard decisions BPSK (binary output quantization) we have two cases
to consider. With side information available,so that capacity is
indeperndent of memory length, the minimum Eb/NJ as a function of r is given
in Figure 3.2. The rate below which uniform jamming is optimum is 0.630.

When side information is available the capacity depends on the memory

length. For m = 1 the capacity is given by (3.25) for 1 < m < = the
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capacity is given in (2.35) with ¢ =p and oK given by
I
(1-p) +p(1-QW2E0 /N )" k=0
N (3.32)

P Q(\/ZEO/NJ)k(l'Q(\/ZEp/NJ))m-k k

1,2,...,m .

The minimum in (2.35) no longer has the simple form of before. 1In
Figure 3.2 we plot the Eb/NJ necessary for reliable communication for
m = 16 without side information and Eb/NJ with side information.

For M-ary orthogonal signaling the corresponding curves for m = 1
(memoryless) and M = 4,8,16,32 are shown in Figures 3.3-3.6. The rates
below which uniform jamming is optimal are given in Table 3.1. The increase
in Eb/NJ need to achieve capacity at low rates is due to the form of modulation
employed. The increase for high rates is due to the decrease in the codes
redundancy at these rates. M-ary orthogonal signaling can also be viewed as
a form of coding. It is an orthogonal code with rate (logzM)/M. 1f an
outer code with rate r is used on the code words of the M-ary orthogonal
code then the overall code rate r' is r' =r logzM/M. Figures 3.3-3.6
could be plotted versus the overall r' instead of r, however, the same
effect for low and high code rates would still be present. We could also
compare these curves to those for BPSK to determine the loss incurred by
using an orthogonal code as an inner code in a concatenated coding approach.
Even though M-ary orthogonal signaling (for finite M) is less efficient
than BPSK, we shall see that it czn be combined with Reed-Solomon codes to

provide performance comparable to BPSK.
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_rate-for channels with partial-band jamming. The cutoff.rate of BPSK
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3.4 Channel Cutoff Rate

In this section we derive expressions for the computational cutoff

..................

with soft decisions, side information and memory has been calculated b; R

Viterbi [43]. We extend these results to include BPSK with hard

decisions with and without side information available. We also calculate'

the cutoff rate for M-ary orthogonal signaling with soft.and hard decisions.
Consider first the case of side information available. From (2.28) the

cutoff rate with side information and memory m is given by

= 1 m
Ry(m) = - = log, E{I(S)] (3.33)
where
-R
I(s) =2 08 (3.34)
and RO s is the cutoff rate of the component channel As. However (3.33) and
(3.34) are valid only when the distribution that achieves RO s in (2.27) is

the same for all component channels. This assumption will be true for all
channels considered here. Viterbi [43] has computed the cutoff rate for the

case of BPSK with soft decisions and partial band jamming as

- 1 -:E/NJ1m1
Ro(m) = min <1 - = logz((l -p) +p'1l+ e ) (3.35)
0<p <= ll. L J J
-E/NJ
1 - logz{l + e ] E/‘NJ <vg
= (3.36)
B
1 m
1-51032[1+E7)T;] E/NJ.Z\)m

The constants in (3.36) are given in Table 3.2.

PROE Y )
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Table 3.2. Constants for computing cutoff rate for BPSK with
partial-band jamming.

m Yo Vm Ym rm

1 .368 1.000 0.6038 1.707

2 .882 0.850 1.439 1.443

3 1.646 0.759 2.670 1.187

4 2.854 0.579 4.603 0.963

5 4.856 0.475 ) 7.796 0.784

6 8.287 0.395 13.258 0.646

7 14.303 0.335 22.819 0.544

8 25.018 0.288 39.829 0.467

For M-ary.orthogonal signaling with uniform jamming, m = 1 and sof:
decisions the channel cutoff rate is given by [16]

-E/ZNJ
RyGD) = -log, [1 + (-1)€ ]/M (3.37)

where Ro is measured in bits per transmission. For partial-band jamming

with side information available, memory m = 1 and soft decisions the cutoff

rate EO(M) from (3.33) and (3.34) is given by

’ "Ep /ZN
M) = min log,M - log, [1 -p-+p\}-+(M-l)e >] (3.38)

| J
o
IA
4]
A
-

The minimization can be done easily to give the worst case p = ¢~ for

partial-band jamming as

:
|
|
E
|
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1 E/NJ <2
p* = (3.39)
—2 E/N_2 2
E/NJ J
so that
r -E/ZNJ -
logzM = log 1+ (M-1)e ] , E/NJ < 2
Ry C) = L . (3.40)
logZM - log [1+2(M-1)e-1/(E/NJ)], IE:/NJ 2 2
It is interesting to compute the limit as M - « in (3.40).
_ (E/ZNJ)logZe , E/NJ.S 2
lim RO(M) = (3.4

M-
logy(e E/2M)) , E/MN;22

while for uniform jamming (p = 1) the limit as M — = of R0 is just
(E/ZNJ)logze. Thus for uniform jamming Ry is a linearly increasing function
of E/NJ while for partial-band jamming RO is increasing logarithmically.
Similar calculations can be done for the case of memory m > 1 and M-ary
orthogonal signaling.

For BPSK and hard decisions the error probability with uniform jamming

is given by
P = QW2E/N ) (3.42)

and the cutoff rate by

Rg =1 - log, (1+2/p(1-p))

= ~log, (1+2/p(1-p))/2 . (3.43)
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From (3.33) we can compute the cutoff rate iéz)(m) for partial-band
jamming with side informatiog, hard decisions and memory m as

EP@ = min {1-1iog(1-0+p+2FTH™  (3.46)
0<p<1

where p = Q(VZEp/NJ). The minimization in (3.45) can be done to yield

1 - 1032(1+2Jp(1-p)) E/NJ <T_

Eéz) (m) = (3.45)

1-31 1+£— E/N.2T
n -8, E/N, J%

The constants Yo and Fm are given in Table 3.2 for 1< m < 8.
When no side information is available the channel is simply a block m

memoryless channel. The cutoff rate is given by (see (2.31))

2
Ry(m) = min 1-=10g, £ ()« (3.46)
0 0<o<1 m 2 k=0 k' "m,k

with « K given in (3.32). For m = 1, however, the channel is simply a
b

BSC with error probability pQ(JZEG/NJ) so that minimizing the cutoff

rate is equivalent to maximizing the error probability. This maximum is

given by
Q(JZE/NJ) , E/NJ > 0.709
P = max onon/NJ) = (3.47)
0<¢ <1 0.08285

and tnhe cutoff rate by using (3.47) in (3.43).
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For M-ary orthogonal modulation with memory m = 1 and hard decisions

the cutoff rate Ro with uniform jamming is given by (measured in M-ary units)

2
Ry = -log, [;14- <J1-P3(E/NJ) +Jm-1)Ps(EmJ)> ] (3.48)

so that the cutoff rate with partial-band jamming is given by

Eéz)(n) - <m:.n< . 1.0 - 1ogM[(1-p) +p(J1-PS(Ep7NJ) +./(M-1)Ps(1~:p/NJ)> z] (3.49)
1.0 - 1ogMK,,/1-Ps (E/N)) + »./(M-I)Ps (E/NJ)>2] E/N; < ay
- .
1.0 - log, [1 +E—/N-J-] E/Ny 2 oy (3.50)
where a and B, are given in Table 3.3. When no side information is

available the cutoff rate is found by using (3.48) with Ps replaced by Fs

given in (3.29).

Table 3.3. Constants used to determine Eéz)(bo.

M N Py
2 3.415 1.208
4 3.347 3764
8 3.307 9.240

16 3.335 21.443

32 3.444 48.915

64 3.627 111.088
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We interpret these results in the same way as we did for capacity.
For all cases the cutoff rate RO(E/NJ) is a function of the symbol signal-

to-noise ratio. If we use codes with rate r < RO(E/NJ) then we must have

|
|
|
|

-1
Eb/NJ > R, (r)/r-logZM (3.51)

et A&

for reliable communication (from cutoff rate considerations).

In Figure (3.7) we show the Eb/NJ needed to achieve Ro for BPSK with
soft decisions and side information available (memory 1). Both partial-band
and uniform jamming cases are shown. For hard decisions with BPSK the three
cases (i) partial-band jamming, no side information (ii) partial-band jamming
with side information and (iii) uniform jamming are shown. In Figure 3.9
the case of hard decisions, side information and memory is considered for

also increases.

m=1,2,4,8. Notice that as m increases the necessary EbNJ

For capacity we saw a decrease in Eb/NJ when memory was increased. For
channels with memory capacity is a better measure of a channel reliability

than the cutoff rate. In Figures 3.10 and 3.11 the Eb/NJ needed to achieve 1

R, is shown for l6-ary and 32-ary orthogonal signaling with hard decisions.

0

3.5 Performance of Codes

In this section we compute the performance of specific codes on channels 4
with partial-band jamming. We consider both BPSK and M-ary orthogonal

signaling forms of modulation with coherent demodulation. Three different

A

types of receivers are considered: (i) soft decisions, side information
available, (ii) hard decisions,side information available, and (iii)

hard decisions no side information available.
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There are several types of codes we consider in combination with the
different types of modulation. We consider channels with memory (m > 1) and
without memory (m = 1), One way of distinguishing codes is by the
alphabet size of the code symbols. Codes which have symbols over alphabets
larger than two are capable of treating symbols from an M-ary form of modula-
tion as one symbol in the code. Binary codes can also be used with M-ary
modulation by treating one symbol as logZM bits and encoding each bit
separately. This is a form of interleaving and when used on channels ,
without side information can degrade the channel reliability from capacity
considerations. However the performance of specific codes must be evaluated
since the overall performance depends also on the type of codes used on
these channels.

Consider first M-ary orthogonal signaling with no memory (m = 1), no
side information available and hard decisions. The symbol error probability
for the worst-case partial-band jammer is given in (3.29). If we use R-S
codes in conjunction with M-ary orthogonal modulation then the decoded
symbol error probability Pe g can be found by using (3.29) in (2.42) with

H

Ps in (2.42) replaced by FS(E/NJ). The decoded bit error probability Pe b

can then be computed as

- —M_
Pe,b 3 M-1 Pe,s (3.52)

Another type of code with alphabet size greater than 2 is the dual-k
convolutional code [30], [44]. This code has alphabet size Zk and can be
used with M-ary modulation (M = Zk). The performance of this code can be
evaluated using (2.40). The summation in (2.40) can be approximated by

the first several terms. The evaluation of (2.40) requires the calculation
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of Pj, the error probability between two words differing in j symbols. This
calculation for an M-ary symetric channel is done in Appendix C.

A bound on (2.40) can be obtained by bounding P, by Dj where for an M-ary

]
symetric channel with symbol error probability F;,D is given by [27, Prob. 7.10]

D = (gf%) P, + 2/(-E)F /01 . (3.53)

Using this bound on P, the series in (2.40) can be summed for dual-k codes

J
with rate 1/v to yield [30]

0 - (Zk - 1)DZV
5 1-w"l. 2% -1-vpY)?

. (3.54)

The bit error probability can be evaluated using (3.52). The wj in (2.40)
can be evaluated from (3.54) by expanding the denominator into a series
in D. Doing this wj is the coefficient of the term Dj.

Still another code which has code symbols of size greater than 2 is
the length n repetition code. This simple code transmits each symbol n times
in a row. The rate of this code is 1/n. For a receiver with hard decisions
the decoder counts the number of times the receiver decides each symbol
was transmitted and then chooses the symbol that was decided upon the most.
If there is a tie between 2 or more symbols the decoder choses one randomly.
The symbol error probability for these codes is derived in Appendix C for
1< n< 8. The form of the error probability Pe s is

n-1 \ .
P, =1- 20 aiP: (1-?5)“'l (3.55)
’ i=

where a; are comstants that depend on M, the symbol size and Ps is the

uncoded symbol error probability.
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As mentioned previously we can also use binary codes with M-ary
modulation. We do this 'y treating each M-ary symbol as logzM bits and

encoding each bit separately. The uncoded bit error probability 55 is

given by

M =
Pb =k T Ps . (3.56)

Now the channel is a BSC with crossover probability FS . The bit error

probability for binary convolutional codes can be evaluated using the first

several terms in (2.40) and using (2.44). The wj are tabulated in [ 9]

Appendix B for some convolutional codes.

Now counsider the case of hard decisions, no memory (m=l) and side
information available. For this case consider the repetition code with M-ary
modulation. If just one symbol in a codeword is not jammed then the deccder
decides the transmitted symbol was the symbol received with no jamming. The
error probability in this case is zero since there is no noise in the unjammed
Ehannels. Thus for an error to occur all n symbols of the repetition code
must be jammed. If the jammer is a partial-band jammer then the probability
of n symbols being jammed is o™, The symbol error probability for this

code is
n-1

P = max {o™1 - I a.P (Ep/N.)T(1-P (Es/x 1N 113.57)
e,s 0<p<1 i=0 is J s J

where Ps(') is given in (3.26). This maximum has the form

n-1 . .
- i . _ - a-i Lo
1 z aiPS(E/NJ)(l PS(L/NJ)) M/NJ < AM,n
i=0
Pe,s = (3.58)
RN t ~ 1y
B}!,n/(t/“\J) x:'/‘\J z A\!,n

S a A

. £ - - . 3
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for some constants AM and B . The bit error probability can be calculated
s M,n
using (3.52).
The performance of the repetition code with soft decisions and side
information available can also be computed. As with hard decisions, the jammer
is forced to jam all symbols in a codeword of a repetition code for anm error

to occur. The symbol error probability can be computed as

(n)
P*™(E/N.) = max {p"P (nEo/N.)} (3.59)
s ¥ o< D‘{f_l s J

where Ps(-) is given in (3.26). The maximum has the form

Ps(nE/NJ) E/NJ < wM,n
(n)
Ps (E/NJ) = (3.60)
¥
M;n - E/NJ 2%
(E/NJ)

where cM,n and wM,n are constants.

For BPSK with memory m = 1 we can use binary convolutional codes or
repetition codes. The error probability for cases of hard decisions with and
without side information are calculated in the same way as for M-arv orthogonal
modulation so we do not repeat the calculations.

With BPSK and memory m > 1 we consider coding using codes with s'mbols
size larger than 2. The method we use to exploit the chanrel's memcrv is to

treat each m bit as one svmbol in a code.
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The probability of a code symbol being in error for partial-band jamming

with BPSK is given by

P, =  max p[1-(1-Q/ZE/N,))"]
1

 o0zex
m
1-(1~Q(YZE/N ) E/N; <2
= (3.61)
wm
—2 E/N. > Z
E/N, J=

with Wm and Zm given in Table 3.4,

Table 3.4. Constants used in computing symbol error probabilities in (3.61).

n Wy 2, W2z,
1 0.0828 0.7088 .1169
2 0.1565 0.7633 .1083
3 0.2225 0.8139 .1010
4 0.2827 0.8608 .0947
5 0.3379 0.9048 .0897
6 0.3890 0.9460 .0845
7 0.4365 0.9849 .0802
8 0.4809 1.0218 .0767

The decoded svmbol error probability can be computed for R-S codes by using

(3.61) in (2.42). The decoded bit error prcbabilitv P is then given bv

e,b
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1-(1-Q(/2E/N )"

P =< (3.62)
&+ Q2Z)

1-(1-Q(v22Z ))
\ m

Pe’s E/N. < Z
m

E/N; > 2

m e,S

We now give some numerical results to indicate the improvement obtained
by using codes on channels with partial-band jamming. We will be interested

in the average bit error probability Pe for a specific code or equivalently

b
the Eb/NJ necessary to obtain a certain bit error rate. Also of interest is
the worst case partial-band jamming strategy p*. Since larger p* means the
jammer's optimum strategy is to jam a larger band this might be a costly

. strategy.

First we give numerical results for the channel without side information
and hard decisions. We give results for M = 32 {32-ary orthogonal signaling).

ll In Table 3.5 the Eb/NJ necessary for bit error probability 10--3 and 10-5

are shown for the length 31 R~S codes when used on this channel. Also shown

is the fraction o* of the band for the worst case partial-band jamming
strategv. For 10_5 error probability the (31,11) RS code requires least

energy E_ while for 10~3 error probability the (31,13) code requires least

b

energy. The improvement in performance obtained by the (31,11) code in

comparison to an uncoded system is 33,1 dB at Pe b = 10-5.
b

The dual k codes performance on the channel with hard decisions, no
side information and partial-band jamming :is shown in T.ole 3.6. The rste
of the code is l/v. The complexity of decoding these coces in terms of

1
storage is proportional to 1 and is nearly indepencent oI V. Notice that




. @ ) 72

Table 3.5. Performance of length 31 R-S codes on channel with hard

L‘ decisions, no side information and partial-band jamming
fc (32-ary orthogonal sigl-tgling, bounded distance decodinfg.
Lj Pe,b =10 ) Pop ™ 10 .
:& Code I-Jb/NJ (dB) p Eb/NJ (dB) P
' No Coding 20.50 0.005 40.50 0.00005
P!! (31,29) 14.35 0.021 24.57 0.002
F - (31,27) 11.32 0.046 18.37 0.009
- (31,25) 9.43 0.076 14.58 0.022
[' (31,23) 8.16 0.111 12.68 0.039
] (31.21) 7.26 0.150 11.13 0.061
- (31,19) 6.62 0.196 10.02 0.088
’ (31,17) 6.19 0.237 9.23 0.118
%. (31,15) 5.95 0.283 8.70 0.151
F (31,13) 5.84 0.335 8.138 0.187
E (31,11) 5.94 0.388 8.27 0.226
1 (31,9) 6.26 0.442 8.41 0.268
F(! (31,7) 6.82 0.497 8.83 0.313
[ (31,5) 7.79 0.557 9.68 0.360
' (31,3) 9.95 0.618 11.34 0.410
(31,1) 13.90 0.681 15.56 0.464

.« W

p——p




(¥

ra
.

L B

73

Table 3.6. Performance of dual-5 codes on channel with hard decisions,

no side information and partial-band jamming (32-ary orthogonal

signaling).
b < 10'2 P,y < 10;5
. E, /N (dB) o E /N (dB) o
1 (No Coding)  20.50 0.005 40.50 0.00005
2 12.95 0.055 20.22 0.010
3 8.93 0.207 13.32 0.075
4 7.53 0.381 10.79 0.180
5 6.97 0.542 9.44 0.307
6 6.75 0.684 8.79 0.428
7 6.71 0.806 8.44 0.541
8 6.75 0.912 8.27 0.643
9 6.85 1.000 8.20 0.736
10 6.95 1.000 8.19 0.819
11 7.05 1.000 8.22 0.895
12 7.13 1.000 _8.29 0.963
13 7.22 1.000 8.35 1.000
14 7.29 1.000 8.43 1.000
15 7.36 1.000 8.49 1.000
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for small enough rates, the worst case of partial-band jamming strétegy is in
fact uniform jamming (p* = 1.0). An identical conclusion was obtained from
capacity and cutoff rate considerations.

Let us now compare the performance of the dual-k and R-S codes. In
comparing two codes we must keep the code rates the same., For example the
dual-5 code with rate %(r = 2) requires Eb/NJ = 20.22 dB for érror probability
10-5. The (31,15) R-S code with rate = % requires only 8.7 dB. The rate
1/3(r = 3) dual-5 code requires Eb/NJ = 13.32 dB for error probability 10-5
while the (31,11) R-S code requires only 8.27 dB. The rate 1/10 dual-5 code
requires Eb/NJ = .19 dB while the (31,3) requires 11.34 dB. The comparisons
made include not only the code under consideration but also the decoding
algorithm. The performance of the dual-k code was computed assuming maximum
likelihood decoding (Viterbi decoding) while the performance of the R~S code
was computed using bounded distance decoding. For high code rates bounded
distance decoding is nearly maximum likelihood. However, for low code rates
this is not the case. For example the (31,1) R-S code is actually just a
repetition code of length 31 and is capable of correcting some patterns of
29 errors with maximum likelihood decoding. The bounded distance decoder
onlyv corrects 15 errors and no more. Thus, on the channel with hard decisions,
partial-band jamming and no side information, for low code rates (< 1/8)

R-S codes with bounded distance decoding become inferior to dual-k codes
because of the decoding algorithm. For moderately large rates (> 1/3) R-S
codes with bounded diszance decoding are superior to dual-k codes with

Viterbi decoding.
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For comparison purposes we can bound the bit error probability for
R-S codes with maximum likelihood decoding (MLD) by using the union bound
[9, eqns. (1-28) and (2-22)]. The performance of the (31,5), (31,3), and
(31,1) codes are shown in Table 3.8. As can be seen the optimal duty
factor p* is larger when using MLD than for bounded distance decoding.
Although MLD is not currently being implemented we shall see later that by
comgining a repetition code with a R-S code with bounded distance decoding
forces the duty factor to one.

The performance of binary con&olutional codes with Viterbi decoding
(MLD) on the 32-ary channel using separate codes on each of the 5 bits in a
32-ary symbol can be calculated using (3.56), (3.29), (2.40) and (2.44) with
b* We consider the rate % constraint length 7 and 9 convolutional
codes in [9, Apnendix B]. In Table 3.9 we indicate the performance cf

these codes. Notice that these codes are inferior to the (31,15) RS code
with bounded distance decoding. Part of the reason for this is that binary
convolutional codes with 32-ary signaling are in effect interleaving and

so when side information is not presant this interleaving degrades the
performance. Massey [23] considered using binary convolutional codes on
the M-ary pulse position moculation photon channel. That channel fits the
mocdels of chapter 2 and has side information available intrinsically.
Massey found that convolutional codes on the photon channel has performance
comparable to the R-S codes, 'e attribute this to the fact that side
information was available. Without side information R-S cocdes outperform

corvoiutional codes.
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no side information, and partial-band jamming

(32-ary orthogonal signaling, maximum likelihood decoding).

-3 -5
< P < 10
Pe,b 10 e,b
*
Code E, /N ;(dB) p* E, /N ;(dB) )
>‘ (31,5) 6.89 0.684 7.81 0.586
(31,3) 7.71 0.945 8.60 0.771

j (31,1) 10.61 1.000 11.76 1.000
be
rc Table 3.8. Performance of binary convolutional codes on channel

* with hard decisions, no side information and partial-

r band jamming (32-ary orthogonal signaling, Viterbi
F decoding).

[ . - i
i <107 P <107 ‘
- e,b e,b

. oo T N ‘
! Code Eb/NJ(dB) 5 ¥ Eb/;\J(dB) * {‘
{ =7 8.00 0.171 11.21 0.082

o =9 6.44 0.245 9.36 0.125

3

o
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We consider now repetition codes on the channel with and without side
information with hard decisions for the former case and with both hard and
soft decisions for the latter case. The case of 32-ary orthogonal
signaling and BPSK are examined. The symbol error probability for hard
decisions without side information is given in (3.55) with Ps = FS(E/NJ)
given in (3.29). In Table 3.9 the performance of repetition codes of

length 3 < n < 8 is shown.

Table 3.9. Performance of length n, rate 1/n repetition codes on channel
with hard decisions, no side information and partial-band jamming
(32-ary orthogonal signaling).

Pap " 1073 P,y 107>
* E3
n Eb/NJ (dB) o) Eb/NJ (dB) o
3 13.21 0.077 23.24 0.0077
4 10.43 0.196 18.55 0.0301
5 9.18 0.326 15.28 0.080
6 8.57 0.451 13.50 0.145
7 8.26 0.564 12.40 0.217
8 8.12 0.666 11.69 0.293

The performance of repetition codes on the channel with side
infrrmation, hard decisions and partial-band jamming is shown in Table 3.10.
In Table 3.1lthe corresponding results are shown for soft decisions. Note

that soft decisions can improve the performance by between 3 and 4 dB.
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Table 3.10. Performance of repetition codes on channel with side information,
hard decisions and partial-band jamming (32-ary orthogonal

signaling).

Py = 1073 P,y " 107
* *

Code E,/N; (dB) 0 E,/N; (dB) o
(3,1) 9.58 0.264 16.25 0.057
(6,1) 8.36 0.438 13.36 0.139
(5,1) 7.86 0.604 11.86 0.240
i (6,1) 7.70 0.748 11.04 0.347
F‘ (7,1) 7.71 0.868 10.56 0.449
A (8,1) 7.79 0.966 10.29 0.543

3
{
[
‘ Table 3.11. Performance of repetition codes on channel with side information,
*c soft decisions and partial-band jamming.
1 1073 = 103
1 Pe,b 10 Pe,b 10
* %
: Code Eb/NJ (dB) c Eb/NJ (dB) o)
(3,1) 6.59 0.381 13.25 0.063
L (4,1) 5.39 0.493 10.39 0.156
t (5,1) 4.87 0.677 8.87 0.269
s (6,1) 4.64 0.838 7.98 0.389
L‘ (7,1) 4.58 0.978 7.44 0.507
{ (8,1) 4.58 1.000 7.10 0.619
} {
:
e
b .
i
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We plot in Figures 3.13-3.15 the symbol error probability for
repetition codes of length 1,3,5, and 7 for the cases of i) hard decisioms,
no side information, 1i) hard decisions with side informationm, iii) soft

decisions with side information. Notice that with hard decisions there is

an optimal divérsicz,or code length such that for fixed Eb/NJ the symbol
error probability is minimized. For soft decisions with side information
however, the symbol error probability decreases as the diversity increases.
We will see in the next chapter that this is not true when there is
noncoherent demodulation and soft decisions. Notice also that for soft
decisions with n large the optimum duty factor is one so that partial-
band jammers are neutralized.

These repetition codes can also be concatenated with Reed-Soloumon
codes. In Tables 3.12-3.15 the preformance of R-S codes when used in
conjunction with repetition codes is shown. The R-S codes were

chosen for each diversity to Eb/NJ for bit error probability 10-3.

P, b=10'3
Code Eb/NJ (dB) ’ c*
(3,1)(31,17) 7.12 0.513
(4,1)(31,21) 6.57 0.702
(5,1)(31,21) 6.48 0.895
(6.1)(31,21) 6.61 0.968

(7,1)(31,23) 6.70 1.000

Table 3.12. Performance of repetition codes and R-S code on
channel with hard decisions and no side information

(32-ary orthogcnal signaling).
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channel with hard decisions and side information

(32-ary orthogonal signaling).

Pe,b-10-3
Code Eb/r{J (dB) p*
(3,1)(31,17) 6.55 0.966
(4,1)(31,21) 6.31 1.000
(5,1)(31,21) 6.45 1.000
(6,1)(31,21) 6.61 1.000
(7,1) (31,23) 6.69 1.000

Table 3.14. Performance of repetition codes and R-S codes on

channel with soft decisions and side information

(32-ary orthogonal signaling).

-3
Pe,b 10

Code Eb/NJ (dB) o*
(3,1)(31,17) 3.54 1.000
(4,1)(31,21) 3.28 1.000
(5,1)(31,21) 3.28 1.000
(6,1)(31,21) 3.28 1.000
(7,1)(31,23) 3.26 1.000

&

L 4

-




81

*(SurtTeudys jruoBoylao Lie-zg) uOTIBWIOIUT BPTS OU pUT BUOISTIIP paey

YITM T2uupyd uo sapod uof3lfiadaa aoj L1y[1qeqoad ioaad joquis

@r) "n/%a .
g1 6 8 4 Z |
LI 11 ) S O O T Y T O L1 L L1 11t 1 111 W T O O O O
N“-.- / -
G=u / —
// -
=
N\ =
//
ﬂ“-.—ll W
] .IlltnaLl.l |
,IL
e ”
=
I (= | | | .. = ).

"C°g 23y




*(Jujreudfs jeuodoyirao Lae-gg) IqUTEAR UOTIVWMIOJUE DPIS put SUOTS[IIP paui|

COR T
ol
Ll

YIFM JauuBHd uo S3pod uofifiadoa 1oy Lajiyqeqoad a01aa joquiy

6
LLEl

8

| 111

L

I

9

O |

S

111}

4

1111

£

4
L

1111

N\
N
N\

=v N

| Pllll (BRI

lnllin 1R}

T

i

IR

]

RN

IO . SR

PTG SO Oy

i

gy dandjy

| P U Y




[ sl e tied

83

*(Suyreudys jeuodoyiao Lxre-gg) IfquifeAr UOTILWIOJUF BPIS pue SUOLSTIVP 3OS

ap) n/%

YIFA sSTouUByD U0 SOpod 10F3FIAAIAL a0y L3jirqeqoad 10439 Joquig

@_ o, m n 9 S 4 £ e |
Lyt e b e bt ___/_ e e el il
2 / £=u \ c
. I-// h / ﬁ-
! Ill | / |
! l/ - |
! - / |
/f / |

I( bur |

~

/l. ////
ﬂ": Il/ .||
>~
~
| -
-

| -
/ »
/ -
'll"l-#l"“l"l vll
A": 'A‘l'l“l'f;l'll‘ ”
l"l'r, ﬂl;"“ll Il
A'llllllllk
T

*Greg 2andyy

;0!

ol

2-0 |




———

LESE . SRR mih o s ou sa s s o

i e T W T T T e T e T e T T, W T, T Y e T e e TR TR Ty ™Y o F & . ¥ T e T
B —y—— T T W e Paduie eSS Lt v . . . . . EE .

84

So far we have only considered the case of memory m = 1 (i.e. memoryless).
The case of memory m > 1 can most easily be examined by considering BPSK
with hard decisions and no side information. The symbol error probability
for a symbol consisting of m bits may‘be calculated in (3.61). If we use R-S
codes of length 2"-1 then the decoded symbol error probability can be
calculated using (2.38). The bit error probability is found by using (3.62).
.In Figure 3.16 the bit error probability for the (31,15) and (255,127) RS
codes is plotted versus Eb/NJ computed using (3.31la) with M = 2. The
performance of the constraint length 7 and 9, rate ! binary convolutional
codes given in [ 9, Appendix B)] with full interleaving (m = 1) is also shown.
Note that when the jammer is present for a particular symbol the uncoded
bit error probability is Q(/ff;) independent of the signal-to-noise ratio E/NJ.
For m = s,Q(/i'z';) = 0.0892 while for m = 8,Q(/2_Z;) = 0.0764. From Figure 3.16
we see that the convolutional codes perform much better on this channel relative
to the R~S codes than on the channel of Chapter 2. This is due to the fact
that the bit error rate when the jammer is on is very low (compared to k%).
Although we expect interleaving to hurt the performance relative to uninterleaved
systems, the memory here is not very dominant. 1In the example of Chapter 2
the error probability is !} when the jammer is on so that the expected number
of bit errors is just )} m or 2.5 for m = 5, and 4 for m = 8. While for the
above channel the expected number of bit errors in a symbol is 0.446 for m = 5

and 0.611 for m = 8 so that most symbol errors are caused by single bit errors.
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CHAPTER 4
CODING FOR CHANNELS WITH PARTIAL-BAND JAMMING AND NONCOHERENT DEMODULATION

4.1 1Introduction

In this chapter we examine the performance of frequency-hopped spread-
spectrum communication system subject to partial-band jamming with noncoherent
demodulation. We consider M-ary orthogonal signals with frequency shift keying
on multiple frequency shift keying (MFSK). The modulated signal is frequency
hopped to produce the transmitted signal. The received signal is dehopped and
then demodulated to produce the channel output. The jammer adds noise to the
signal only over a fraction of the frequency band the transmitter is using.

The strategy of the jammer corresponds ta the fraction of the band that is
jammed. We will consider the performance for the worst case jamming strategy.

The remainder of the chapter is divided into four sections. 1In Section 4.2
the channel models will be described for MFSK with noncoherent demodulation.

We will consider the MFJK for M-ary orthogonal signals to simplify the descrip-
tion. The capacity for the channel described in Section 4.2 is computed in
Section 4.3 with and without side information available at the channel output.
In Section 4.4 we repeat the calculations for the cutoff rate. In Section

4.5 the performance of specific codes is evaluated when side information is

and is not available. We compare the coded performance to the channel

capacity and cutoff rate.
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4.2 Channel Models

In this section the channel models for frequency-hopped spread-spectrum
communication using MFSK are given when there is partial-band jamming. As
mentioned in Chapter 1 we treat the frequency hopper and dehopper as performing
inverse operations on the modulated signal. The output of the frequency
dehopper consists of two additive terms. The first term corresponds to the
received signal in the absence of noise, while the second term is due to the
jammer's signal: This second term is nonzero only if there was a jamming
signal in the band that the MFSK signal was transmitted in. This band includes
the frequencies of all possible MFSK signals the modulator produces.

Consider frequency hopping with m symbols per hop. Since as in Chapter 3
we assume the channel is memoryless from hop to hop describing the chanrel for
a single hop is sufficient to desr ..e the channel. For MFSK the input
alphabet A = {0,1,...,M-1}. Assume that the particular hop begins at time
t = 0 and is of duration mT where T is the duration of one MFSK signal. When
the input Xj, 0 < j <m, takes the value i € A, the data modulated signal
éi(t—jT) is the input to the frequency hopper during the interval jT =< t = (j+1)T.

The signal gi(t) is given by

éi(t) = /2P cos(w.t +8)p (t)  (J-1IT £t < 3T (4.1)

where W, 0 <1i<M, is the radian frequency of the signal, P is the power
and T is the duration. (We assume throughout that {§i(t)}i €A forms an
orthogonal signal set.) In (4.1) ei, 0 < i =< M~1l is the phase of the i-th
signal. The frequency hopper changes the center frequency of the mcdulated

signal in difZerent hops to one of q different center frequencies according
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to a specified hopping to produce the transmitted signal si(t-jT) during

the interval jT < t < (j+1)T, 0 < j < m, given by
si(t) = /2P pT(t)cos(wL + wi)t + mi) 4.2)

where w, 1< 4 < q are the q different center frequencies of the hopping
pattern.

The model for the jamming signal is the same as in Chapter 3 so we do
not repeat the descriptions here.

The received signal r(t) when si(t-jT), 0= j<m is transmitted

consists of the sum of the transmitted signal and the jamming signal:
r(t) = si(t-jT) + j(t), T t< (3+L)T . (4.3)

(Here we assume without 1oss.of generality that all time delays are zero.)
The frequency dehopper changes the center frequency of the received signal
according to the hopping pattern of the transmitter. A possible random
phase shift is also introduced. The signal T(t) at tbt- output of the

frequency dehopper is then given by
£(t) = 2P cos(n € + 0, )pp ()43, (8)  (J-D)T < £ < )T (&.4)

where Ez(t) is the bandpass process obtainmed from when j(t) is frequency
translated by “w, and then filtered by an ideal bandpass filter with center
frequency w; and bandwidth 2£L. The bandwidth w is chosen large enough

so that each of the MFSK signals is essentially unaltered when filcered

by this bandpass filter. Also in (4.4) <5 is a random phase which accounts
for the phase introduced by the frequency hopper, dehopper, and any

transmission delays.
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The demodulator we consider processes the received signal ;'(t) by

i computing the M-dimensional vector X_U) = (Yl _1’Yz FERRERY VY j) where
Y = [ —— r(t)cos w, tdt + r(t)sin w, tdt s
L3 (NJT) [( . : ) ( . : )]

0= i< M-1 (4.5)
The density p(yk,j|x=i,z =1/p) of Yk,j given xj = { and the jammer is on

- can be shown to be given by

Vi, 2op (-5 BBy, ), k=1

p(yk’jlx=i,z=1/p)= %.6)

Yk’jexP{"’ﬁ ylz(’j} » k # i

where B = ZPT/NJZ = 2 E/NJZ and 5T is defined as the energy per transmitted

symbol, When the jammer is off (Z =0) we have

B 1,k|xj =41,z=0} =1 .7

PlY;; = VZ E/N; 8

where éi Kk is 1 for k = i and zero otherwise.
H]

Note that the receiver can tell given Y, ., whether or not the jammer

k,j
was on during the hop by checking if Yk 3 = ,/2 I-Z/NJ éi Kk for some i so that
2 ?

side information is available. However, the receiver might just decide
that s, was transmitted in [(-1)T,3jT] if Yi,j > Yka.i k #1i. In this case
the receiver makes a hard decision and disregards the side information.
Alcernatively the receiver may kncw which hops were jammed and make hard

decisions. In the next section we compute the capacity of the partial-band

noise jamming channel for the cases stated above.

Snandnam -~ R -.--A',LAA_.J
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4.3 Channel Capacity

In this section we derive expressions for the capacity of frequency
hopped MFSK with partial-band jamming. We compare this to the capacity
when the jammer corrupts the entire frequency band of the system (p = 1).

We conclude that provided codes of rate smalleé than some critical rate are
used, p = 1 is the worst case partial-band janndné threat.

We treat the case of the receiver having side information first. When
the jammer is on the channel is a M-ary FSK additive Gaussian noise channel
with signal energy-to-noise ratio 2Ep/NJ. The capacity CM(Ep/NJ) of this
component channel is achieved with a uniform input distribution on A. When
the jammer is off the component channel is a M-ary symmetric channel with
error probability zero and capacity (measured in M-ary symbols per chamnel
use) equal to-1.0. Thus both component channels have the same input
distribution that achieves capacity. In this case from (2.18) the capacity
of the composite channel is independent of the memory length m of the channel.
The capacity E(E/NJ) for M-ary FSK with worst case partial-band jamming is
given by

CyEMD =  ma o g@EN)+ -} . (4.8)
0<p =<1l
The minimum in (4.8) can be found numerically or by setting the first

derivative equal to zero:

%; {o CyEe/N}) + (1-2)} =0
or

CM(Ep/NJ) + t-:c/NJ CQ(EQ/NJ) =1 (4.9)
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where C'(x) = 3C(x)/3x . From (4.9) we can determine the dependence of the

*
n worst case p = p on the signal-to-noise ratio E/NJ as

1 lE./NJ < Yy

%
p = (4.10)
" -ZH- E/N_2 v
I-:/NJ J M
where Yy is the solution of
A
' =
Culty) + 9yl =1 . (4.11)
Using (4.10) in (4.8) we obtain
CM(E/NJ) E/NJ < Yy
C, (E/N)) = (4.12)
Yy = Ny (Y

1 -

E/N ENyzyy -
J
If codes of rate r (measured in M-ary units) are used then reliable
communication is possible provided r < E(E/NJ) (see Theorem 2, Chapter 2).

In the case E/NJ > Yu reliable communication is possible provided

Yy - YMCM(YM)
E/NJ

r<l -

or
Yy = Ny ) (1-Cy(vy))
(1-r) B (1-t)

E/NJ > (4.13)

Since E is the energy per transmitted signal and logZM bits are transmitted

per signal the energy per information bit with code of rate r is




q
.......
----------------
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. Eb/NJ - (E/NJ)/r 1032M

so that (4.13) becomes

Y, (1-C (Y\))
E /N, > MG (M

J 7 log,M(l-r)r (4.14)

We wish to choose the code rate that minimizes the right hand side of

(4.14). The minimum can easily be shown to occur at r = r* = %, Thus for

the optimal code rate we need

by, (1, (¥))
logZM

Eb/NJ > . (46.15)
This holds provided E/NJ > Yy °F equivalently CM(YM) < %. Note that so far
we have not specified the type of receiver (e.g. hard decisions, soft
decisions). For a particular receiver structure we need only compute CM(x)
and Cﬁ(x) to solve (4.11). Notice from (4.10) that provided E/NJ < ¥y or
equivalently CM(E/NJ) < Yy the worst case partial-band jamming strategy
is in fact uniform jamming.

For binary FSK with soft decisions (so side information is available)

Cz(x) has been computed [ ] as

r\

C,(x) = exp{-x} | o Yo'1 exp{- % (yc2,+yi)}lo(2xy)

0

21 . (2xy,)
0 0 dy .dy
Io(2xy0)-+10(2xy1) 071

* log (4.16)

We can also compute Cé(x) by differentiating (4.15) for soft decisions with

binary FSK and partial-band jamming
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. C(E/NJ) 1.?./:«J < 2.4137
EZ(E/NJ) - : 4.17)
1.1741
1- E/NJ E/NJ 22,4137 .

Notice in this case Yﬁ = 2.4137 and CC%M) = 0.51359 > 0.5 so that (4.14) is
not valid. The optimal code rate in this case can be found numerically to be
approximately 0.48.

For M-ary FSK with hard decisions the capacity EM(x) is given by (3.27)
with P replaced by Ps(E/NJ) given by

1

M
- M
P& "y I 0D

(j) exp{- E/N (1 - /5 . (4.18)

For partial-band jamming with side information available and hard decisions

the capacity EM(E/NJ) can be computed using (4.8)-(4.12) as

CM(PS(E/NJ)) E/NJ < Yy
C (BN = o ) (4.19)
Yy - By (B, Gy) )
1- E/N, E/Ny 2 Yy

where ?M iy a constant. 1In Table 4.1 we list the values of ;M and EMGQM)

for M = 2,4,8,16 and 32. Notice that EM(QM) < % so that the optimal code

rate for these cases is r = %,

When side information is not available the capacity depends on the X
memory length of the channel., For m = 1 the channel is a memoryless MSC with q

symbol error probability given by the average of the error probabilities of the b




component channels. Since capacity is a decreasing function of the symbol

error probability maximizing symbol error probability is equivalent ¢o
minimizing capacity. The maximum of the average error probability 5;(E/NJ)

has been computed [15] as

P E/N,) = max_ 1{9 P (Es/N))}

0<p =
PS(E/NJ) ' E/NJ < Ny
= (4.20)
MEs ()
E/N, E/N; 2 Ay

The capacity is found using (3.27) with P = 5;(E/NJ) given in (4.20).

Thus the capacity Eﬁ(E/NJ) with no side information is given by

CM(PS (E/NJ)) E/NJ < Ny
CM(E/NJ) = (4.21)
¢ OB Oy))
C s E/N_ 2
M —EN, 32 M

The values of KM’ PS(XM) and CM(xw) are given in Table 4.1.

Table 4.1. Values of constants used to determine capacity for M-ary FSK.

w Yy Cy ) M B, Oy Ay
2 3.0169 0.4982 2.0000 0.1839 0.3114
4 3.275 0.4878 2.3830 0.2933 0.3311
8 3.6610 0.4721 2.7821 0.3687 0.3384
16 4.01532 0.4540 3.1924 0.4259 0.3380
32 4.3882 0.4354 3.6132 0.4715 0.3333

el Attt M




To interpret these results we plot the Eb/NJ needed to achieve capacity

(see 3.31b).

For soft decisions binary FSK the capacity is given in (4.17). 1In

Figure 4.1 we plot Eb/NJ needed to achieve capacity. This is compared to

the Eb/NJ needed to achieve capacity for uniform jamming. For rates less
than 0.513 uniform jamming is the optimal partial-band jamming strategy.
Notice the increase in Eb/NJ necessary for reliable communications
for low rates. This did not happen for BPSK with soft decisions.
We explain this increase as the noncoherent combining loss encountered
when the receiver does not demodulate the transmitted signal coherently
and the code rates are small.

For hard decisions M-ary FSK with and without side information the

Eb/N needed for reliable communications is shown in Figures 4.2-4,6 for

J
M= 2,4,8,16, and 32, The rates below which uniform jamming is optimal

are given in Table 4.1. These curves are for the case of m = 1. 1In
Figure 4.2 we also plot the Eb/NJ necessary for reliable communication
when m > 1.

For m > 1 the capacity is given by (2.35) with ¢ = ¢ and am,k given by

-Ea /2N

(1-p) + p(l-ke ) k=0

am,k

Ec /2N

s e Ik -ED/ZNJ -k

) (1l-%e ) k=1,2,...,m

The minimum in (2.35) no longer has the simple inverse linear relation for

the case m = 1.
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In Section 4.5 we compare the system performance based on capacity
calculation to the performance based on error probability for specific
codes.

4.4 Channel Cutoff Rate

In this section we derive expressions for the computational cutoff rate
for channels with partial-band jamming and noncoherent demodulation. Many

of these results have appeared in the literature [ 4], [ 8], [42] for

a

memoryless channels (m = 1). We repeat these calculations for completeness

and also treat the case of memory m > 1.

Consider first the case of side information available. From (2.28) the

cutoff rate with side information and memory m is given by

- _ l m
Ro(m) = - = log E{3(s)] (4.23)
where
Ro,s
J@s) =M (4.24)
and Ro s is the cutoff rate of the component channels As'

The necessary assumption for the validity of (4.23) and (4.24) that the
input distribution that achieves RO,s is the same for all component channels
will be true for all channels considered.

When the jammer is on the channel it is an M-ary FSK additive Gaussian
noise channel with signal energy-to-noise ratio ZEp/NJ. The cutoff rate
RO,M(EG/NJ) of this component channel is achieved with a uniform input
distribution on A. When the jammer is off the channel it is a noiseless MSC

with cutoff rate (measured in M-ary units) 1 achieved by a uniform input

distribution. The cutoff rate of the composite channel is then
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=(m) R ¢ <(m)
RO,M(E/NJ) = log, {.rM (:-:/N_,)} (4.25)
where
T®Em) «  max pIEN) + A-p)3 (6.26)
M J M J
0<sp =<1
“Ro,u®)
and Iy (x) =M ° . The maximum in (4.26) can be found by setting the
derivative equal to zero:
B, ) +moy, 32 e, I, )= G 4.27)
M ' M,m sM M M, m M,m M -
x ' = . .
where y,m = EP /N; and ) (x) aJM(x)/ax. The value of M,m that satisfies
(4.27) determines the worst case p = p*-
1 E/NJ < CM,m
¥ = (4.28)
c
M,m
—rn b .
E/N] EM; 20y
Using (4.28) in (4.25) yields
JM(E/NJ) I:'./NJ < GM,m
T E/my = (4.29)
M " A : R
z
l.m M,m
Gt E/N] EN; 2% m
: - - m _uR =(m) s
% where LM,m cM,m JM(cM,m) M GM,m and thus RO,M can be found using -}
p (4.23) in (4.25). Notice from (4.28) for E/NJ the worst case jamming ‘

PO U D WS VP U T S
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strategy is uniform jamming. Using (4.29) in (4.25) we obtain
Ro uEN) EM; <% m
= (m) -
RO, (E/NJ) (4.30)
1-110 kil “u.w EN, >0
m %% T E/N J 7 %M,m
the constants Z and © depend on the type of recelver (e.g. hard
M,m M,m
decisions ‘and soft decisions).
For soft decisions Jm(x) can be computed to be [16]
S -t2/2.% 2
1+ @-1e *[f te’" I} (WZx)de]
0
I (x) = = . (46.31)

For m=1 it is easy to check that the maximization in (4.26) is independent
" of M. For m=l the cutoff rate with soft decisions and side information is

(measured in M-ary units)

[ RO,M(E/NJ) E/NJ < 2.871

¢y =
RO’M(E/NJ) = 1 (4.32)

(Lt (-1 (1.624)3

E/NJ E/NJ = 2.871 .

1l - logM

For hard decisions J_(x) is given by {16]

1+ (M-l)[::;—:% B,(x) + 2/F_(0 (1P (x))/ 0+ D) )

J_(x) = (4.33)

M
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where Ps(x) is given in (4.18). 1In Table 4.2 the constants used to evaluate

l the cutoff rate with side information are given for m = 1 and M = 2,4,8,16
and 32.
l! Table 4.2. Constants for M-ary hard decision cutoff rate.
M M,1 Ly,1
2 4.268 1.007
4 4.244 1.502
8 4,245 1.825
16 4.314 2,063
32 4.460 2.291

For hard decisions without side information and m = 1 the jammer just
maximizes the symbol error probability. For m > 1 we can use (2.31) to
compute the cutoff rate with am,k given in (4.22).

We plot in Figure 4.7 the Eb/NJ needed to achieve Ro for binary FSK
with soft decisions. Both partial-band and uniform jamming are shown. 1In

Figure 4.8 the Eb/NJ needed is shown for binary FSK with hard decisions.

Both uniform and partial-band jamming are shown as well as both cases of

side information available. Finally in Figure 4.9 the corresponding results
are shown for 32-ary FSK. We note here that (4.32) is similar to an expression
obtained by Viterbi [43] and Omura and Levitt [31]. However, both of these n

papers considered soft decisions with square law combining (a suboptimum

receiver). Here we consider the optinum receiver to obtain (4.32). The form i

of the expressions are identical with 1.424 replaced by 1.47153,
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4.5 Performance of Codes

In this section we examine the performance of codes on channels with
partial-band jamming. We consider the same codes as in Chapter 3.

Consider first hard decisions with 32-ary FSK. The symbol error
probability has the exact same form for noncoherent detection as for coherent
detection when the optimal duty factor p* is less than one. In fact when
p < l.the decoded bit error probabilities are the same if for noncoherent
we add 1.96 dB to the tables in Chapter 3. However we must check
always that p < 1. In Table 4.3 we give the bit energy-to-average noise
density required for 10-'3 and 10-5 bit error rates with length 31 R~S
codes and in Table 4.4 the corresponding curves for dual-k codes.

From capacity calculation we see that at rate 13/31=.42 we need
Eb/NJ=3.2 dB for reliable communicgtion. From cuttoff rate calculations
this is increased to Eb/NJ=9.OdB. From Table 4.3 we see that for error
probability 10.3 we need Eb/NJ=7,8 dB for R-S codes, 4.6 dB more than what the
channel capacity says and 1.2 less than what the cutoff rate indicates.

We note that the optimal R-S code for 10—3 error probability has rate 0.42
while for 10"5 the optimal R-S code has rate 0.35. The optimal rate from
capacity considerations is 0.43 and from cutoff rate considerations is
0.191. The optimal rates for dual k codes are much less than R-S codes.

For 10-3 error probability the rate 1/7=0.14 is optimal while for 10“5 error
probability the optimal rate is 1/10=0.1 which are much less than predicted
from capacity considerations and slightly less than that predicted from the
cutoff rate.

Consider now the symbol error probability for repetition codes with

and without side information. When side information is not available the
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Table 4.3. Performance of length 31 R-S codes with bounded distance
decoding, no side information and partial-band jamming
(32-ary FSK). :
A 1073 Py, - 1of5
Code Eb/N 1 (dB) p* Bb/t!J (dB) p*
No Coding 22,45 0.004 42.45 0.00004
(31,29) 16.31 0.018 26.53 0.0017
(31,27) 12.99 0.039 20.33 0.008
(31,25) 11.39 0.065 16.54 0.018
(31,23) 10.12 0.095 14.64 0.034
(31,21) 9.21 - 0.128 13.09 0.053
(31,19) 8.58 0.164 11.98 0.075
(31,17) 8.14 0.202 11.19 0.100
(31,15) 7.91 0.242 10.66 0.127
(31,13) 7.80 0.286 10.34 0.160
(31,11) 7.89 0.331 10.23 0.193
(31,9) 8.19 0.377 10.37 0.229
(31,7) 8.78 0.424 10.79 0.267
(31,5) 9.75 0.475 11.64 0.308
(31,3) 11.50 0.528 13.30 0.350
(31,1) 15.86 0.581 17.52 0.397
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Table 4.4. Performance of dual-5 codes with Viterbi decoding on channel with
hard decisions, no side information available and partial-band
jamming (32-ary FSK).

Coding Ey/Ny (dB) o E, /Ny (4B) o
No Coding 23.37 0.004 45.37 0.00004
v =2 14.91 0.177 22.18 0.004
3 10.89 0.325 15.18 0.064
4 9.44 0.463 12.75 0.154
5 8.93 0.584 11.40 0.262
6 8.71 0.584 10.74 0.365
7 8.67 0.688 10.70 0.461
8 8.71 0.778 10.23 0.549
9 8.80 0.857 10.16 0.628
10 8.93 0.925 10.14 0.699
11 9.07 0.986 10.17 0.764
12 9.21 1.000 10.24 0.822
13 9.34 1.000 10.32 0.875
14 9.47 1.000 10.41 0.923
15 9.56 1.000 10.51 0.966

PR |
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uncoded symbol error probability is calculated using (4.20). With
coding the symbol error probability is calculated using (3.55). This

is plotted in Figure 4.10 for n=1,3,5,7. When side information is
available then the symbol error probability has the form of (3.58) with
different constants and Ps given in (4.18). This is plotted in Figure
4.11. With soft decisions and side information available the error
probability for square-law combining has been calculated [40]. This is
shown in Figure 4.12. Although square-law combining is not optimal, for
low signal-to-noise ratios it 15 nearly optimal. With partial-band jamming
the signal-to-noise ratio when jammed is typically very small so we
expect that square-law combining is nearly optimal. In comparing

Figures 4.12 and 3.15 we see that with noncoherent reception the optimal
code rate depends on the Eb/NJ whereas for coherent reception the optimal

rate is the smallest rate.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

In this thesis we have examined the performance of codes on channels
with partial-band interference and frequency-hopping. The capacity,
cutoff rate and channel capacity were all considered as performance
measures. In Chapter 2 it is shown that the capacity is a better para-
meter to characterize the performanﬁe of a channel than the cutoff rate.
Comparisons between burst-error correcting codes and random-error correcting
codes with interleaving showed that the later performed comparably to the
former only in the case of side information available. Without side
information burst-error correcting codes perform better.

We examined extensively two types of demodulation for channels with
partial-band jamming, namely coherent and noncoherent. We made the
assumption that there was no background noise in the channel. The
assumption is easily relaxed. The forms of nearly all expressions are
modified slightly when there is some background noise. For example, the
maximum symbol error probability for M-ary orthogonal signaling given in
(3.29) with background noise and worst case partial-band jamming becomes

P (E/(N;+N,)) E/N; < X (E/Ng)

P_(E/N.) = .
s J 2
,M(E/NO)

P(EMNo) + .

E/NJ > xM(E/NO)

where AM and BW depend only on E/NO, the signal-to-background noise

ratio. As E/N0 > @ XM(E/NO) - X}

( given in (3.29). Similar results can

be derived for the capacity and cutoff rate. These results can also be

extended to include fading and jamming together. In many cases with fading
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it turns out that the optimum partial-band jamming strategy is uniform

or broad band jamming. For Rician fading this is true only for certain

i?anges'of the parameter characterizing the fraction of transmitted energy

that {s faded. In the other range the worst case jamming strategy has

"“.the samefform as in the nonfaded channel. What we try to indicate is that

‘the channel models we are employing are quite general and applicable to a
wide variety of communication systems.

For channels with partial-band interference we evaluated the perfor-
‘mance of several codes. We considered both block and convolutional codes,
hard and soft decisions and channels with and without side information.

We conclude that good coding schemes exist for channels with partial-band

interference and are essential for reliable communications.
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APPENDIX A: DERIVATION OF CAPACITY, RANDQM CODING EXPONENT .
AND CUTOFF RATE FOR CHANNELS WITH MEMORY

In this appendix we derive (2.22), (2.24), and (2.29)-(2.32). Let:*As
be an M-ary symmetric channel with crossover probability s/(M-1) so that
" the symbol error probability is s. Let P be a distribution on the random
variable S. Here we normalize the information rates by measuring in
M-ary symbols per channel use so that the capacity is less than 1.

First consider the capacity CM(m) without side information available.

From (2.16) this is given by
1
Cy(m) = max — I(X;Y) (a.1)

where X = (Xl’XZ""’xm)’ XA= (Yl,Yz,...,Ym) and the maximum is over all
distributions on the vector X. The maximum in (A.l) is obtained by the

uniform distribution for all channels As so that (A.l) can be written as

1 p(zlx)
Cy (@) = ;ii Pzl x)P @) logy oy (A.2)
¥ p(z|x)
=== I Z p(y|x)logy — (&.3)
¥x M

That p(y) = M™™ is due to the fact that the channel is symmetric and that

p(x) = M". From (A.3) we have

p(y|x) (log M + log, p(y|x))
By ¥

Gy =73

Tz
IX

o i
p(y!x) log,p(¥!x) - (2.4)

e ™
1% ™
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The sum over X in' (A.4) can be decomposed into two sums as

m
= z z .
x k=0 x:d(x,y)=k

The second sum is over all vectors x which are distance k from y. The
distance measure here is the Hamming distance (i.e. d(x,y) is equal to the
number of components in which x and y differ). If x and y differ in k

places then k channel errors have occurred so that

Ay & Pl = E0Cs/ 01 (1)) 5 By = k @.5)

Notice that (A.5) depends only on k and not on the specific x and y. For y
fixed, the number of vectors x such that d(x,y) = k is just (E) (M-l)k so

that (A.4) becomes

m
Cy(m) = 1 +;} zo o) (M-l)kczm’klogMam’k (A.6)

k=

which for M = 2 is (2.22).

When side information is available the capacity EM(m) is given by

¢, @ = E{C, ()] (a.7)

where éM(x) is the capacity of an M-ary symmetric channel with symbol error

probability x and is given by

-

CM(x) =1+ (l-x)logM(l-x) + x logM(x/(M-l)) A.8)

for M=2 (A.7) and (A.8) yield (2.24).
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Next consider the random coding exponent defined in (2.26) for these

channels. For no side information available the random coding exponent is

TE e

e 6,00 ts

1
1
logM [2 M p(zlx)“p ] *

Egu’m)(psQ*) - -

Blr

. 1l

L10g, 4z n‘“‘“’"’)[ I I pulo™ ]
Yy k=0 x:d(x,y)=k

Lis
--2 log, {L M “‘(1""’)[ r G- 1)k 1"" ]
y k=0
1 1+
=p - 3 log, [kgo(k)(n-l) « *1]
1

S [ £ ot 31

=p lo z M- a (A.9)
B | o

For the case of side information available E ,Q%) can be calculated

as follows

L
_ - 1
EgM’m) (p’Q*) = - nlx 10%<lzs[i M mP(Z,S‘ZE) g ] )

l+p
- 5 logy I ~m(l4p) [ o uloeesyY ‘“‘”] )
k=0 x:d(x,y)=k S

. . 1/ (l4+e)ql4c
-2 1ogM(Z w ™ ﬂ)[kzo(k) M-1)" (8/(M-1))k(1-8)m-kp(5) ] )

'S

1/(14)) 1+
5 - % log, E T & at-1) [( ) (1- 5)‘“"‘]
k=0

(A.10)
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which for M=2 is (2.30).

The cutoff rate can be easily evaluated by setting p = 1.0 in (A.9) and

(A.10). When side information is not available (A.9) with p = 1.0 becomes

Ry u(@ “ m 198y k-o(k)m-l) (@)

(A.11)

which for M=2 is (2.31). When side information is available (A.10) with

p = 1.0 becomes

Bir

_ m k 1512
Ry (@ =1 -3 logE kﬁ()(i‘)(u-l)“[(%) (1-s)™ k]

8l

k=0 £=0

1 R om o ) )
=1-=10 z £ OOy
m %%y (k=0 =0 K’ m’l_hz»_z

which for M=2 is (2.32).

. 2 om k+e[/ s l‘:4-1"(1-5)2‘“'“"5 g
log £ I (k)(‘;) M-1) [km> ]

(A.12)
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APPENDIX B

WORST CASE DISTRIBUTION FOR PARTIAL-BAND JAMMING

In this appendix we show that allowing the jammer to have an arbitrary
number of power levels instead of just on or off does not change the optimal
jamming strategy. Viterbi and Jacobs showed based on an upper bound to
the error probability that for binary FSK two level is optimum with
diversity. ’Here we prove that two levels is optimum for binary FSK based
on the exact bit error probability and that two levels is optimal based on
channel capacity when side information is available.

Let Z be a nonnegative random variable with expectation N and distribution
Fz(z). I1f Z = z represents the jammer having noise level z then the average

error probability p is &

-8/22 }

p=Elke (B.1)

where 8§ is the received energy of the transmitted signal. Define the
function £(z) by
% e'-‘:’/22 z2>0

f(z) =

This is shown in Figure B.1l.

We will show that f has a single point of inflection

-3/2z

£'(z) = % e (E/Zzz)

-5/22

) =y 2@k -




-8/2z

Since ¥ e (é%) is always nonnegative the only point of inflection

z
occurs at z = E/4. Furthermore for z < Ef4, £(z) is a convex function

~ while for z > E/4 £(z) is a concave function. Define the function t by

et /e 0<z<E/
}(z) -

£(z) - .z > E/2 .
This function is shown in Figure A.1l. From the above it can be shown that
£(z) < £(2) z 20
with equality if z > E/2. We can write (A.l) as
? = E{£(2)} < E{%(2)} S

with equality if 2> E/2 or if Z is conccentrated at the two endpoints

i.e. Z2=0 and z=E/2. Now since f is a concave function we have
p<EE@N<EE@)) = FN) . @®@.3)

Equality can be achieved in (B.3) if z is concentrated on two points or

less. Notice that

) e-d'/ZN &/N < 2
TW) =
!
\ m /N = 2
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Thus we have shown that two levels is a worst-case distribution for binary
FSK with error probability on the performance measure. The capacity
without side information is a decreasing function of the error probability
so that two levels is optimum without side information also.

With side information the capacity C is the average of the capacities

of various power levels:
c = efc@/2)} .

Now instead of maximizing the error probability we minimize the capacity.
All the arguments for error probability are true when £ is replaced by
C(8/z) provided C(8/z) = g(z) changes convexity just once. This is much

harder to show for g than for f and will not be done here.
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APPENDIX C: ERROR PROBABILITY FOR REPETITION CODES
ON M-ARY SYMMETRIC CHANNELS

In this appendix we derive the error probability for repetition
codes on an M-ary symmetric channel (11SC). Let p be the probability
of a symbol error on an MSC and let q=l-p. Also let X represent the
input to the channel (X € {0,1,...,M-1}) and Y the output. Then the

probability that Y=y given that X=x is given by

a4 x=y
P{Y=y|X=x} =

p/M-1 x#y

Assume the information symbol to be transmitted is X=0. The
repetition code sends this symbol n times. The decoder counts the number
of times each symbol was received and chooses the one that had the
largest count, as the transmitted symbol. Let Yi 0 < i < M-1 be the
number of times that i was received. For n=1 the symbol error probability
Pe,s(l) is just p; for n=2 the error probability Pe,s(z) can be computed

by considering the probability of correct decision Pc S

Pc’s(n) =1 - Pe 5(n) (C.1)

This can be computed as

<n) = [ = = = 3
P, = PlY, 2} + %P{Yo-l, Yj 1, some j#0 }

The first term is the probability that both symbols transmitted were %
2

received correctly and is equal to (l1-p)~. The second term is the

probability that a tie occurred which is decided randomly between X=0 ]

and X=j. This is given by !5 2(1-p)p so that




P, = (1-p)° + p(1-p) = 1-p (c-2)

jt °’ |
. For n=3 we have the probability of correctly decoding ?c 8?3) given by -
»

B = B{Yy > 2} + 32{Yp=1, Y1, ¥,=1, 140, 340, 141)

3 2 1 - S e oo —
= q~ + 3pq +3’3qp(1p) . -

= q3 + 3pq + (M 2)p2 B (C.3)

For n=4 we have

s = q* + 4q% + 6q p( p) + 5 6q2p ﬁf-l— :
+1eqp 2002w ‘ |
+ g sap 1 P 1 P -?
= q* + 4o’ + [6GD + 3lp1e%p? + LEDLD 3

1) -
(C.4) ®
For n=5 B
S5 = q” +5¢°p + 10477 + 10D &Y + 15 X2y %3 B
(}'!-l) . 4

P BN ‘e.5)
(‘4-1) x

For n=6

)
]

—
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4® = ¢° + 6% + 15q"p? + [60 LR 0o BEDEED , 10 g
M-1) (M-1) M-1)
+ [ 15 HDENEA) 45 W2 20
M-1) M-1)
(M‘l)

Notice in each case that Pc s(n) 1s expressed as
]

n-1
Pc’s(n) = .Z a, qn-i pi (C.D
i=0
For n=7 the coefficients are
i ai
0 1
1 7
2 21
3 35
4 35 (6 (M#Z)(MSB) + (M—2)(M—§)(M—4) + 2 M-2 " ]
M-1) (M-1) (M-1)
: 21 [ LEDOEI QO QD) | 5 (02) (03) 0-6)
(M-l) (W-l)
5 QEDGED
(M-l)

(M=-2) (M-3) (M=4) (M-5)
ae-1)°

For n=8 and M=32 the a, are given below.




4 56.

5 69.998825149

6 55.717975016
7 21.909972461
8 0.481708426
; - M1 = (M=
For any M and n with p = o Pe,c(n) (M-1) /M.

We can calculate an upper bound on Pe C(n) for any n by applying

the union bound technique. This 1s calculated as follows:
(2)
Pe s(n) < (M-1) Pe,s (n)

"
where Pé'l(n) is the error probability between two codewords of a repetition

3

code of length n. This can be shown to be given by

(2) - i -j k. M=-2 .n-j-k
() = ij (3.‘) q (“Q)(ﬁ) G
j <k
j+tk<n
1 (n/2] n-j M- n=2j
+5 T <)q< ) E 65 (C.8)
j=0

A simpler bound can be obtained by using the Bhattacharyya bound on

P(Z)(n). This bound is
e,s
(2) .
Pe,s(n) <D (C.9)




where D is given as

D = ( HM:—%) p + 2/p(l-p)/M-1 .
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